56.1.81 problem 80
Internal
problem
ID
[8793]
Book
:
Own
collection
of
miscellaneous
problems
Section
:
section
1.0
Problem
number
:
80
Date
solved
:
Sunday, March 30, 2025 at 01:36:43 PM
CAS
classification
:
[[_Riccati, _special]]
\begin{align*} y^{\prime }&=x^{2}+y^{2} \end{align*}
✓ Maple. Time used: 0.002 (sec). Leaf size: 43
ode:=diff(y(x),x) = x^2+y(x)^2;
dsolve(ode,y(x), singsol=all);
\[
y = -\frac {x \left (\operatorname {BesselJ}\left (-\frac {3}{4}, \frac {x^{2}}{2}\right ) c_1 +\operatorname {BesselY}\left (-\frac {3}{4}, \frac {x^{2}}{2}\right )\right )}{c_1 \operatorname {BesselJ}\left (\frac {1}{4}, \frac {x^{2}}{2}\right )+\operatorname {BesselY}\left (\frac {1}{4}, \frac {x^{2}}{2}\right )}
\]
✓ Mathematica. Time used: 0.139 (sec). Leaf size: 169
ode=D[y[x],x]==x^2+y[x]^2;
ic={};
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
\begin{align*}
y(x)\to \frac {x^2 \left (-2 \operatorname {BesselJ}\left (-\frac {3}{4},\frac {x^2}{2}\right )+c_1 \left (\operatorname {BesselJ}\left (\frac {3}{4},\frac {x^2}{2}\right )-\operatorname {BesselJ}\left (-\frac {5}{4},\frac {x^2}{2}\right )\right )\right )-c_1 \operatorname {BesselJ}\left (-\frac {1}{4},\frac {x^2}{2}\right )}{2 x \left (\operatorname {BesselJ}\left (\frac {1}{4},\frac {x^2}{2}\right )+c_1 \operatorname {BesselJ}\left (-\frac {1}{4},\frac {x^2}{2}\right )\right )} \\
y(x)\to -\frac {x^2 \operatorname {BesselJ}\left (-\frac {5}{4},\frac {x^2}{2}\right )-x^2 \operatorname {BesselJ}\left (\frac {3}{4},\frac {x^2}{2}\right )+\operatorname {BesselJ}\left (-\frac {1}{4},\frac {x^2}{2}\right )}{2 x \operatorname {BesselJ}\left (-\frac {1}{4},\frac {x^2}{2}\right )} \\
\end{align*}
✗ Sympy
from sympy import *
x = symbols("x")
y = Function("y")
ode = Eq(-x**2 - y(x)**2 + Derivative(y(x), x),0)
ics = {}
dsolve(ode,func=y(x),ics=ics)
TypeError : bad operand type for unary -: list