Internal
problem
ID
[8410]
Book
:
DIFFERENTIAL
EQUATIONS
with
Boundary
Value
Problems.
DENNIS
G.
ZILL,
WARREN
S.
WRIGHT,
MICHAEL
R.
CULLEN.
Brooks/Cole.
Boston,
MA.
2013.
8th
edition.
Section
:
CHAPTER
8
SYSTEMS
OF
LINEAR
FIRST-ORDER
DIFFERENTIAL
EQUATIONS.
EXERCISES
8.2.
Page
346
Problem
number
:
15
Date
solved
:
Sunday, March 30, 2025 at 01:01:03 PM
CAS
classification
:
system_of_ODEs
ode:=[diff(x(t),t) = 9/10*x(t)+21/10*y(t)+16/5*z(t), diff(y(t),t) = 7/10*x(t)+13/2*y(t)+21/5*z(t), diff(z(t),t) = 11/10*x(t)+17/10*y(t)+17/5*z(t)]; dsolve(ode);
ode={D[x[t],t]==9/10*x[t]+21/10*y[t]+32/10*z[t],D[y[t],t]==7/10*x[t]+65/10*y[t]+42/10*z[t],D[z[t],t]==11/10*x[t]+17/10*y[t]+34/10*z[t]}; ic={}; DSolve[{ode,ic},{x[t],y[t],z[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") y = Function("y") z = Function("z") ode=[Eq(-9*x(t)/10 - 21*y(t)/10 - 16*z(t)/5 + Derivative(x(t), t),0),Eq(-7*x(t)/10 - 13*y(t)/2 - 21*z(t)/5 + Derivative(y(t), t),0),Eq(-11*x(t)/10 - 17*y(t)/10 - 17*z(t)/5 + Derivative(z(t), t),0)] ics = {} dsolve(ode,func=[x(t),y(t),z(t)],ics=ics)
Timed Out