53.2.3 problem 10

Internal problem ID [8456]
Book : Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.
Section : CHAPTER 16. Nonlinear equations. Section 97. The p-discriminant equation. EXERCISES Page 314
Problem number : 10
Date solved : Sunday, March 30, 2025 at 01:06:23 PM
CAS classification : [[_1st_order, _with_linear_symmetries], _dAlembert]

\begin{align*} {y^{\prime }}^{2}-x y^{\prime }-y&=0 \end{align*}

Maple. Time used: 0.035 (sec). Leaf size: 77
ode:=diff(y(x),x)^2-x*diff(y(x),x)-y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} \frac {c_1}{\sqrt {2 x -2 \sqrt {x^{2}+4 y}}}+\frac {2 x}{3}+\frac {\sqrt {x^{2}+4 y}}{3} &= 0 \\ \frac {c_1}{\sqrt {2 x +2 \sqrt {x^{2}+4 y}}}+\frac {2 x}{3}-\frac {\sqrt {x^{2}+4 y}}{3} &= 0 \\ \end{align*}
Mathematica. Time used: 60.111 (sec). Leaf size: 1003
ode=(D[y[x],x])^2-x*D[y[x],x]-y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} \text {Solution too large to show}\end{align*}

Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x*Derivative(y(x), x) - y(x) + Derivative(y(x), x)**2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE -x/2 - sqrt(x**2 + 4*y(x))/2 + Derivative(y(x), x) cannot be solved by the factorable group method