Internal
problem
ID
[8376]
Book
:
DIFFERENTIAL
EQUATIONS
with
Boundary
Value
Problems.
DENNIS
G.
ZILL,
WARREN
S.
WRIGHT,
MICHAEL
R.
CULLEN.
Brooks/Cole.
Boston,
MA.
2013.
8th
edition.
Section
:
CHAPTER
7
THE
LAPLACE
TRANSFORM.
EXERCISES
7.5.
Page
315
Problem
number
:
12
Date
solved
:
Sunday, March 30, 2025 at 12:53:20 PM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
Using Laplace method With initial conditions
ode:=diff(diff(y(t),t),t)-7*diff(y(t),t)+6*y(t) = exp(t)+Dirac(t-2)+Dirac(t-4); ic:=y(0) = 0, D(y)(0) = 0; dsolve([ode,ic],y(t),method='laplace');
ode=D[y[t],{t,2}]-7*D[y[t],t]+6*y[t]==Exp[t]+DiracDelta[t-2]+DiracDelta[t-4]; ic={y[0]==9,Derivative[1][y][0] ==0}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(-Dirac(t - 4) - Dirac(t - 2) + 6*y(t) - exp(t) - 7*Derivative(y(t), t) + Derivative(y(t), (t, 2)),0) ics = {y(0): 0, Subs(Derivative(y(t), t), t, 0): 0} dsolve(ode,func=y(t),ics=ics)
Timed Out