Internal
problem
ID
[8387]
Book
:
DIFFERENTIAL
EQUATIONS
with
Boundary
Value
Problems.
DENNIS
G.
ZILL,
WARREN
S.
WRIGHT,
MICHAEL
R.
CULLEN.
Brooks/Cole.
Boston,
MA.
2013.
8th
edition.
Section
:
CHAPTER
8
SYSTEMS
OF
LINEAR
FIRST-ORDER
DIFFERENTIAL
EQUATIONS.
EXERCISES
8.1.
Page
332
Problem
number
:
9
Date
solved
:
Sunday, March 30, 2025 at 12:57:20 PM
CAS
classification
:
system_of_ODEs
ode:=[diff(x(t),t) = x(t)-y(t)+2*z(t)+exp(-t)-3*t, diff(y(t),t) = 3*x(t)-4*y(t)+z(t)+2*exp(-t)+t, diff(z(t),t) = -2*x(t)+5*y(t)+6*z(t)+2*exp(-t)-t]; dsolve(ode);
ode={D[x[t],t]==x[t]-y[t]+2*z[t]+Exp[-t]-3*t,D[y[t],t]==3*x[t]-4*y[t]+z[t]+2*Exp[-t]+t,D[z[t],t]==-2*x[t]+5*y[t]+6*z[t]+2*Exp[-t]-t}; ic={}; DSolve[{ode,ic},{x[t],y[t],z[t]},t,IncludeSingularSolutions->True]
Too large to display
from sympy import * t = symbols("t") x = Function("x") y = Function("y") z = Function("z") ode=[Eq(3*t - x(t) + y(t) - 2*z(t) + Derivative(x(t), t) - exp(-t),0),Eq(-t - 3*x(t) + 4*y(t) - z(t) + Derivative(y(t), t) - 2*exp(-t),0),Eq(t + 2*x(t) - 5*y(t) - 6*z(t) + Derivative(z(t), t) - 2*exp(-t),0)] ics = {} dsolve(ode,func=[x(t),y(t),z(t)],ics=ics)
Timed Out