53.3.15 problem 17

Internal problem ID [8477]
Book : Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.
Section : CHAPTER 16. Nonlinear equations. Section 99. Clairaut equation. EXERCISES Page 320
Problem number : 17
Date solved : Sunday, March 30, 2025 at 01:11:34 PM
CAS classification : [[_1st_order, _with_linear_symmetries], _Clairaut]

\begin{align*} x {y^{\prime }}^{3}-y {y^{\prime }}^{2}+1&=0 \end{align*}

Maple. Time used: 0.045 (sec). Leaf size: 64
ode:=x*diff(y(x),x)^3-y(x)*diff(y(x),x)^2+1 = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \frac {3 \,2^{{1}/{3}} \left (x^{2}\right )^{{1}/{3}}}{2} \\ y &= -\frac {3 \,2^{{1}/{3}} \left (x^{2}\right )^{{1}/{3}} \left (1+i \sqrt {3}\right )}{4} \\ y &= \frac {3 \,2^{{1}/{3}} \left (x^{2}\right )^{{1}/{3}} \left (-1+i \sqrt {3}\right )}{4} \\ y &= c_1 x +\frac {1}{c_1^{2}} \\ \end{align*}
Mathematica. Time used: 0.013 (sec). Leaf size: 69
ode=x*(D[y[x],x])^3-y[x]*(D[y[x],x])^2+1==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to c_1 x+\frac {1}{c_1{}^2} \\ y(x)\to 3 \left (-\frac {1}{2}\right )^{2/3} x^{2/3} \\ y(x)\to \frac {3 x^{2/3}}{2^{2/3}} \\ y(x)\to -\frac {3 \sqrt [3]{-1} x^{2/3}}{2^{2/3}} \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*Derivative(y(x), x)**3 - y(x)*Derivative(y(x), x)**2 + 1,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out