54.2.23 problem 26

Internal problem ID [8555]
Book : Elementary differential equations. Rainville, Bedient, Bedient. Prentice Hall. NJ. 8th edition. 1997.
Section : CHAPTER 16. Nonlinear equations. Miscellaneous Exercises. Page 340
Problem number : 26
Date solved : Sunday, March 30, 2025 at 01:17:42 PM
CAS classification : [[_1st_order, _with_linear_symmetries], _rational, _dAlembert]

\begin{align*} x {y^{\prime }}^{2}+\left (k -x -y\right ) y^{\prime }+y&=0 \end{align*}

Maple. Time used: 0.085 (sec). Leaf size: 45
ode:=x*diff(y(x),x)^2+(k-x-y(x))*diff(y(x),x)+y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= k +x -2 \sqrt {k x} \\ y &= k +x +2 \sqrt {k x} \\ y &= \frac {c_1 \left (c_1 x +k -x \right )}{c_1 -1} \\ \end{align*}
Mathematica. Time used: 0.017 (sec). Leaf size: 54
ode=x*D[y[x],x]^2+(k-x-y[x])*D[y[x],x]+y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to c_1 \left (x+\frac {k}{-1+c_1}\right ) \\ y(x)\to -2 \sqrt {k} \sqrt {x}+k+x \\ y(x)\to \left (\sqrt {k}+\sqrt {x}\right )^2 \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
k = symbols("k") 
y = Function("y") 
ode = Eq(x*Derivative(y(x), x)**2 + (k - x - y(x))*Derivative(y(x), x) + y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out