5.3.15 Problems 1401 to 1500

Table 5.63: Problems not solved by Sympy

#

ODE

Mathematica

Maple

Sympy

7735

\[ {} y^{\prime } = x^{2} y^{2}-4 x^{2} \]

7737

\[ {} y^{\prime } = 2 \sqrt {y} \]

7747

\[ {} 2 x y+\left (x^{2}+3 y^{2}\right ) y^{\prime } = 0 \]

7753

\[ {} 2 y \,{\mathrm e}^{2 x}+2 x \cos \left (y\right )+\left ({\mathrm e}^{2 x}-x^{2} \sin \left (y\right )\right ) y^{\prime } = 0 \]

7757

\[ {} 5 x^{3} y^{2}+2 y+\left (3 x^{4} y+2 x \right ) y^{\prime } = 0 \]

7761

\[ {} y y^{\prime \prime }+4 {y^{\prime }}^{2} = 0 \]

7763

\[ {} y^{\prime \prime } = y y^{\prime } \]

7767

\[ {} y^{\prime \prime }+\sin \left (y\right ) = 0 \]

7768

\[ {} y^{\prime \prime }+\sin \left (y\right ) = 0 \]

7772

\[ {} [y_{1}^{\prime }\left (x \right ) = 3 y_{1} \left (x \right )+x y_{3} \left (x \right ), y_{2}^{\prime }\left (x \right ) = y_{2} \left (x \right )+x^{3} y_{3} \left (x \right ), y_{3}^{\prime }\left (x \right ) = 2 y_{1} \left (x \right ) x -y_{2} \left (x \right )+{\mathrm e}^{x} y_{3} \left (x \right )] \]

7779

\[ {} x y^{\prime }+y = y^{\prime } \sqrt {1-x^{2} y^{2}} \]

7844

\[ {} y^{\prime }+x y = y^{4} x \]

7849

\[ {} y^{\prime } \sin \left (2 x \right ) = 2 y+2 \cos \left (x \right ) \]

7851

\[ {} \sin \left (x \right ) \tan \left (y\right )+1+\cos \left (x \right ) \sec \left (y\right )^{2} y^{\prime } = 0 \]

7852

\[ {} y-x^{3}+\left (y^{3}+x \right ) y^{\prime } = 0 \]

7853

\[ {} 2 y^{2}-4 x +5 = \left (4-2 y+4 x y\right ) y^{\prime } \]

7856

\[ {} \left (\sin \left (x \right ) \sin \left (y\right )-x \,{\mathrm e}^{y}\right ) y^{\prime } = {\mathrm e}^{y}+\cos \left (x \right ) \cos \left (y\right ) \]

7859

\[ {} 2 x y^{3}+\cos \left (x \right ) y+\left (3 x^{2} y^{2}+\sin \left (x \right )\right ) y^{\prime } = 0 \]

7861

\[ {} 2 y^{4} x +\sin \left (y\right )+\left (4 x^{2} y^{3}+x \cos \left (y\right )\right ) y^{\prime } = 0 \]

7865

\[ {} {\mathrm e}^{y^{2}}-\csc \left (y\right ) \csc \left (x \right )^{2}+\left (2 x y \,{\mathrm e}^{y^{2}}-\csc \left (y\right ) \cot \left (y\right ) \cot \left (x \right )\right ) y^{\prime } = 0 \]

7869

\[ {} \frac {y-x y^{\prime }}{\left (x +y\right )^{2}}+y^{\prime } = 1 \]

7878

\[ {} x y^{\prime } = \sqrt {x^{2}+y^{2}} \]

7884

\[ {} y^{\prime } = \frac {x +y-1}{x +4 y+2} \]

7889

\[ {} y^{\prime } = \sin \left (\frac {y}{x}\right )-\cos \left (\frac {y}{x}\right ) \]

7891

\[ {} y^{\prime } = \frac {x^{2}-x y}{y^{2} \cos \left (\frac {x}{y}\right )} \]

7893

\[ {} \left (3 x^{2}-y^{2}\right ) y^{\prime }-2 x y = 0 \]

7894

\[ {} x y-1+\left (x^{2}-x y\right ) y^{\prime } = 0 \]

7898

\[ {} y+\left (x -2 x^{2} y^{3}\right ) y^{\prime } = 0 \]

7901

\[ {} y \ln \left (y\right )-2 x y+\left (x +y\right ) y^{\prime } = 0 \]

7902

\[ {} y^{2}+x y+1+\left (x^{2}+x y+1\right ) y^{\prime } = 0 \]

7904

\[ {} y^{\prime } = \frac {2 y}{x}+\frac {x^{3}}{y}+x \tan \left (\frac {y}{x^{2}}\right ) \]

7905

\[ {} y y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

7906

\[ {} x y y^{\prime \prime } = {y^{\prime }}^{3}+y^{\prime } \]

7909

\[ {} 2 y y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

7910

\[ {} y y^{\prime \prime }-{y^{\prime }}^{2} = 0 \]

7913

\[ {} y y^{\prime \prime } = y^{2} y^{\prime }+{y^{\prime }}^{2} \]

7914

\[ {} y^{\prime \prime } = {\mathrm e}^{y} y^{\prime } \]

7916

\[ {} y^{\prime \prime }+{y^{\prime }}^{2} = 1 \]

7921

\[ {} y^{\prime } = \frac {x^{2}+y^{2}}{-y^{2}+x^{2}} \]

7933

\[ {} y y^{\prime \prime }-{y^{\prime }}^{2} = 0 \]

7935

\[ {} y y^{\prime \prime }+y^{\prime } = 0 \]

7990

\[ {} y^{\prime \prime }-3 y^{\prime }+2 y = \frac {1}{1+{\mathrm e}^{-x}} \]

8000

\[ {} \left (x^{2}-1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = \left (x^{2}-1\right )^{2} \]

8001

\[ {} \left (x^{2}+x \right ) y^{\prime \prime }+\left (-x^{2}+2\right ) y^{\prime }-\left (x +2\right ) y = x \left (1+x \right )^{2} \]

8002

\[ {} \left (1-x \right ) y^{\prime \prime }+x y^{\prime }-y = \left (1-x \right )^{2} \]

8003

\[ {} x y^{\prime \prime }-\left (1+x \right ) y^{\prime }+y = x^{2} {\mathrm e}^{2 x} \]

8009

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

8011

\[ {} y^{\prime \prime }-\frac {x y^{\prime }}{x -1}+\frac {y}{x -1} = 0 \]

8013

\[ {} x^{2} y^{\prime \prime }-x \left (x +2\right ) y^{\prime }+\left (x +2\right ) y = 0 \]

8014

\[ {} y^{\prime \prime }-x f \left (x \right ) y^{\prime }+f \left (x \right ) y = 0 \]

8015

\[ {} x y^{\prime \prime }-\left (2 x +1\right ) y^{\prime }+\left (1+x \right ) y = 0 \]

8071

\[ {} y^{\prime \prime }+\sin \left (y\right ) = 0 \]

8084

\[ {} x y^{\prime } = y \]

8086

\[ {} y^{\prime } x^{2} = y \]

8088

\[ {} y^{\prime }-\frac {y}{x} = x^{2} \]

8097

\[ {} y^{\prime \prime }+2 x y^{\prime }-y = x \]

8098

\[ {} y^{\prime \prime }+y^{\prime }-x^{2} y = 1 \]

8109

\[ {} x^{3} \left (x -1\right ) y^{\prime \prime }-2 \left (x -1\right ) y^{\prime }+3 x y = 0 \]

8111

\[ {} x^{2} y^{\prime \prime }+\left (2-x \right ) y^{\prime } = 0 \]

8116

\[ {} x^{3} y^{\prime \prime }+y \sin \left (x \right ) = 0 \]

8117

\[ {} x^{4} y^{\prime \prime }+y \sin \left (x \right ) = 0 \]

8118

\[ {} x^{3} y^{\prime \prime }+\left (-1+\cos \left (2 x \right )\right ) y^{\prime }+2 x y = 0 \]

8121

\[ {} x^{3} y^{\prime \prime }-4 y^{\prime } x^{2}+3 x y = 0 \]

8127

\[ {} y^{\prime \prime }+\frac {y^{\prime }}{x^{2}}-\frac {y}{x^{3}} = 0 \]

8128

\[ {} x^{2} y^{\prime \prime }+\left (3 x -1\right ) y^{\prime }+y = 0 \]

8134

\[ {} \left (x -1\right )^{2} y^{\prime \prime }-3 \left (x -1\right ) y^{\prime }+2 y = 0 \]

8135

\[ {} 3 \left (1+x \right )^{2} y^{\prime \prime }-\left (1+x \right ) y^{\prime }-y = 0 \]

8143

\[ {} \left (1-{\mathrm e}^{x}\right ) y^{\prime \prime }+\frac {y^{\prime }}{2}+y \,{\mathrm e}^{x} = 0 \]

8144

\[ {} y^{\prime \prime }+2 x y = x^{2} \]

8145

\[ {} y^{\prime \prime }-x y^{\prime }+y = x \]

8146

\[ {} y^{\prime \prime }+y^{\prime }+y = x^{3}-x \]

8152

\[ {} x^{2} \left (x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+\left (x +2\right ) y = 0 \]

8153

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (1+x \right ) y = 0 \]

8155

\[ {} 4 x^{2} y^{\prime \prime }+4 y^{\prime } x^{2}+2 y = 0 \]

8158

\[ {} x^{2} y^{\prime \prime }+x \left (1-x \right ) y^{\prime }+y = 0 \]

8160

\[ {} x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }+\left (x^{2}+x \right ) y^{\prime }+x y = 0 \]

8161

\[ {} x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-3 x y^{\prime }+\left (x -1\right ) y = 0 \]

8162

\[ {} x^{3} y^{\prime \prime \prime }-2 x^{2} y^{\prime \prime }+\left (x^{2}+2 x \right ) y^{\prime }-x y = 0 \]

8163

\[ {} x^{3} y^{\prime \prime \prime }+\left (2 x^{3}-x^{2}\right ) y^{\prime \prime }-x y^{\prime }+y = 0 \]

8165

\[ {} 9 \left (x -2\right )^{2} \left (x -3\right ) y^{\prime \prime }+6 x \left (x -2\right ) y^{\prime }+16 y = 0 \]

8170

\[ {} L i^{\prime }+R i = E_{0} \operatorname {Heaviside}\left (t \right ) \]

8181

\[ {} i^{\prime \prime }+2 i^{\prime }+3 i = \left \{\begin {array}{cc} 30 & 0<t <2 \pi \\ 0 & 2 \pi \le t \le 5 \pi \\ 10 & 5 \pi <t <\infty \end {array}\right . \]

8206

\[ {} [x^{\prime }\left (t \right ) = -x \left (t \right )+y \left (t \right )-z \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )-y \left (t \right )-4 z \left (t \right ), z^{\prime }\left (t \right ) = 3 x \left (t \right )-y \left (t \right )+z \left (t \right )] \]

8210

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right ) y \left (t \right )+1, y^{\prime }\left (t \right ) = -x \left (t \right )+y \left (t \right )] \]

8211

\[ {} [x^{\prime }\left (t \right ) = 1+t y \left (t \right ), y^{\prime }\left (t \right ) = -t x \left (t \right )+y \left (t \right )] \]

8213

\[ {} y^{\prime } = -x +y^{2} \]

8217

\[ {} y^{\prime } = y+x \,{\mathrm e}^{y} \]

8232

\[ {} \left (x -1\right ) y^{\prime \prime }+y^{\prime } = 0 \]

8246

\[ {} y^{\prime \prime }-x y = 1 \]

8247

\[ {} y^{\prime \prime }-4 x y^{\prime }-4 y = {\mathrm e}^{x} \]

8249

\[ {} y^{\prime \prime }+5 x y^{\prime }+y \sqrt {x} = 0 \]

8252

\[ {} x^{3} y^{\prime \prime }+4 y^{\prime } x^{2}+3 y = 0 \]

8257

\[ {} x^{2} \left (x -5\right )^{2} y^{\prime \prime }+4 x y^{\prime }+\left (x^{2}-25\right ) y = 0 \]

8260

\[ {} x^{3} \left (x^{2}-25\right ) \left (x -2\right )^{2} y^{\prime \prime }+3 x \left (x -2\right ) y^{\prime }+7 \left (x +5\right ) y = 0 \]

8282

\[ {} x y^{\prime \prime }+\left (x -6\right ) y^{\prime }-3 y = 0 \]

8285

\[ {} x^{3} y^{\prime \prime }+y = 0 \]

8286

\[ {} x^{2} y^{\prime \prime }+\left (3 x -1\right ) y^{\prime }+y = 0 \]

8305

\[ {} y^{\prime \prime }-x^{2} y = 0 \]

8322

\[ {} \left ({\mathrm e}^{x}-1-x \right ) y^{\prime \prime }+x y = 0 \]

8323

\[ {} y^{\prime \prime }+y^{\prime } x^{2}+2 x y = 10 x^{3}-2 x +5 \]