Internal
problem
ID
[8484]
Book
:
Elementary
differential
equations.
By
Earl
D.
Rainville,
Phillip
E.
Bedient.
Macmilliam
Publishing
Co.
NY.
6th
edition.
1981.
Section
:
CHAPTER
16.
Nonlinear
equations.
Section
99.
Clairaut
equation.
EXERCISES
Page
320
Problem
number
:
25
Date
solved
:
Sunday, March 30, 2025 at 01:11:44 PM
CAS
classification
:
[[_1st_order, _with_linear_symmetries], _dAlembert]
ode:=5*diff(y(x),x)^2+6*x*diff(y(x),x)-2*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=5*(D[y[x],x])^2+6*x*D[y[x],x]-2*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(6*x*Derivative(y(x), x) - 2*y(x) + 5*Derivative(y(x), x)**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE 3*x/5 - sqrt(9*x**2 + 10*y(x))/5 + Derivative(y(x), x) cannot be solved by the factorable group method