54.2.11 problem 13

Internal problem ID [8543]
Book : Elementary differential equations. Rainville, Bedient, Bedient. Prentice Hall. NJ. 8th edition. 1997.
Section : CHAPTER 16. Nonlinear equations. Miscellaneous Exercises. Page 340
Problem number : 13
Date solved : Sunday, March 30, 2025 at 01:17:15 PM
CAS classification : [[_1st_order, _with_linear_symmetries], _Clairaut]

\begin{align*} x^{2} {y^{\prime }}^{3}-2 x y {y^{\prime }}^{2}+y^{2} y^{\prime }+1&=0 \end{align*}

Maple. Time used: 0.068 (sec). Leaf size: 80
ode:=x^2*diff(y(x),x)^3-2*x*y(x)*diff(y(x),x)^2+y(x)^2*diff(y(x),x)+1 = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \frac {3 \,2^{{1}/{3}} \left (-x \right )^{{1}/{3}}}{2} \\ y &= -\frac {3 \,2^{{1}/{3}} \left (-x \right )^{{1}/{3}} \left (1+i \sqrt {3}\right )}{4} \\ y &= \frac {3 \,2^{{1}/{3}} \left (-x \right )^{{1}/{3}} \left (-1+i \sqrt {3}\right )}{4} \\ y &= c_1 x -\frac {1}{\sqrt {-c_1}} \\ y &= c_1 x +\frac {1}{\sqrt {-c_1}} \\ \end{align*}
Mathematica. Time used: 136.313 (sec). Leaf size: 33909
ode=x^2*(D[y[x],x])^3-2*x*y[x]*(D[y[x],x])^2+y[x]^2*D[y[x],x]+1==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 

Too large to display

Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2*Derivative(y(x), x)**3 - 2*x*y(x)*Derivative(y(x), x)**2 + y(x)**2*Derivative(y(x), x) + 1,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out