Internal
problem
ID
[8386]
Book
:
DIFFERENTIAL
EQUATIONS
with
Boundary
Value
Problems.
DENNIS
G.
ZILL,
WARREN
S.
WRIGHT,
MICHAEL
R.
CULLEN.
Brooks/Cole.
Boston,
MA.
2013.
8th
edition.
Section
:
CHAPTER
8
SYSTEMS
OF
LINEAR
FIRST-ORDER
DIFFERENTIAL
EQUATIONS.
EXERCISES
8.1.
Page
332
Problem
number
:
8
Date
solved
:
Sunday, March 30, 2025 at 12:56:46 PM
CAS
classification
:
system_of_ODEs
ode:=[diff(x(t),t) = 7*x(t)+5*y(t)-9*z(t)-8*exp(-2*t), diff(y(t),t) = 4*x(t)+y(t)+z(t)+2*exp(5*t), diff(z(t),t) = -2*y(t)+3*z(t)+exp(5*t)-3*exp(-2*t)]; dsolve(ode);
ode={D[x[t],t]==7*x[t]+5*y[t]-9*z[t]-8*Exp[-2*t],D[y[t],t]==4*x[t]+y[t]+z[t]+2*Exp[5*t],D[z[t],t]==-2*y[t]+3*z[t]+Exp[5*t]-3*Exp[-2*t]}; ic={}; DSolve[{ode,ic},{x[t],y[t],z[t]},t,IncludeSingularSolutions->True]
Too large to display
from sympy import * t = symbols("t") x = Function("x") y = Function("y") z = Function("z") ode=[Eq(-7*x(t) - 5*y(t) + 9*z(t) + Derivative(x(t), t) + 8*exp(-2*t),0),Eq(-4*x(t) - y(t) - z(t) - 2*exp(5*t) + Derivative(y(t), t),0),Eq(2*y(t) - 3*z(t) - exp(5*t) + Derivative(z(t), t) + 3*exp(-2*t),0)] ics = {} dsolve(ode,func=[x(t),y(t),z(t)],ics=ics)
Timed Out