56.1.67 problem 67

Internal problem ID [8779]
Book : Own collection of miscellaneous problems
Section : section 1.0
Problem number : 67
Date solved : Sunday, March 30, 2025 at 01:33:01 PM
CAS classification : [[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

\begin{align*} 3 y y^{\prime \prime }+y&=5 \end{align*}

Maple. Time used: 0.028 (sec). Leaf size: 59
ode:=3*y(x)*diff(diff(y(x),x),x)+y(x) = 5; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} -3 \int _{}^{y}\frac {1}{\sqrt {30 \ln \left (\textit {\_a} \right )+9 c_1 -6 \textit {\_a}}}d \textit {\_a} -x -c_2 &= 0 \\ 3 \int _{}^{y}\frac {1}{\sqrt {30 \ln \left (\textit {\_a} \right )+9 c_1 -6 \textit {\_a}}}d \textit {\_a} -x -c_2 &= 0 \\ \end{align*}
Mathematica. Time used: 0.33 (sec). Leaf size: 41
ode=3*y[x]*D[y[x],{x,2}]+y[x]==5; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ \text {Solve}\left [\int _1^{y(x)}\frac {1}{\sqrt {c_1+\frac {2}{3} (5 \log (K[1])-K[1])}}dK[1]{}^2=(x+c_2){}^2,y(x)\right ] \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(3*y(x)*Derivative(y(x), (x, 2)) + y(x) - 5,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out