Internal
problem
ID
[8411]
Book
:
DIFFERENTIAL
EQUATIONS
with
Boundary
Value
Problems.
DENNIS
G.
ZILL,
WARREN
S.
WRIGHT,
MICHAEL
R.
CULLEN.
Brooks/Cole.
Boston,
MA.
2013.
8th
edition.
Section
:
CHAPTER
8
SYSTEMS
OF
LINEAR
FIRST-ORDER
DIFFERENTIAL
EQUATIONS.
EXERCISES
8.2.
Page
346
Problem
number
:
16
Date
solved
:
Sunday, March 30, 2025 at 01:02:35 PM
CAS
classification
:
system_of_ODEs
ode:=[diff(x__1(t),t) = x__1(t)+2*x__3(t)-9/5*x__4(t), diff(x__2(t),t) = 51/10*x__2(t)-x__4(t)+3*x__5(t), diff(x__3(t),t) = x__1(t)+2*x__2(t)-3*x__3(t), diff(x__4(t),t) = x__2(t)-31/10*x__3(t)+4*x__4(t), diff(x__5(t),t) = -14/5*x__1(t)+3/2*x__4(t)-x__5(t)]; dsolve(ode);
ode={D[ x1[t],t]==x1[t]+2*x3[t]-18/10*x4[t],D[ x2[t],t]==51/10*x2[t]-x4[t]+3*x5[t],D[ x3[t],t]==x1[t]+2*x2[t]-3*x3[t],D[ x4[t],t]==x2[t]-31/10*x3[t]+4*x4[t],D[ x5[t],t]==-28/10*x1[t]+15/10*x4[t]-x5[t]}; ic={}; DSolve[{ode,ic},{x1[t],x2[t],x3[t],x4[t],x5[t]},t,IncludeSingularSolutions->True]
Too large to display
from sympy import * t = symbols("t") x__1 = Function("x__1") x__2 = Function("x__2") x__3 = Function("x__3") x__4 = Function("x__4") x__5 = Function("x__5") ode=[Eq(-x__1(t) - 2*x__3(t) + 9*x__4(t)/5 + Derivative(x__1(t), t),0),Eq(-51*x__2(t)/10 + x__4(t) - 3*x__5(t) + Derivative(x__2(t), t),0),Eq(-x__1(t) - 2*x__2(t) + 3*x__3(t) + Derivative(x__3(t), t),0),Eq(-x__2(t) + 31*x__3(t)/10 - 4*x__4(t) + Derivative(x__4(t), t),0),Eq(14*x__1(t)/5 - 3*x__4(t)/2 + x__5(t) + Derivative(x__5(t), t),0)] ics = {} dsolve(ode,func=[x__1(t),x__2(t),x__3(t),x__4(t),x__5(t)],ics=ics)
MatrixError : Jordan normal form is not implemented if the matrix have eigenvalues in CRootOf form