29.26.3 problem 736

Internal problem ID [5324]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 26
Problem number : 736
Date solved : Sunday, March 30, 2025 at 07:57:13 AM
CAS classification : unknown

\begin{align*} y^{\prime } \cos \left (y\right ) \left (\cos \left (y\right )-\sin \left (A \right ) \sin \left (x \right )\right )+\cos \left (x \right ) \left (\cos \left (x \right )-\sin \left (A \right ) \sin \left (y\right )\right )&=0 \end{align*}

Maple. Time used: 0.039 (sec). Leaf size: 33
ode:=diff(y(x),x)*cos(y(x))*(cos(y(x))-sin(A)*sin(x))+cos(x)*(cos(x)-sin(A)*sin(y(x))) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ \frac {\left (-2 \sin \left (A \right ) \sin \left (x \right )+\cos \left (y\right )\right ) \sin \left (y\right )}{2}+\frac {\cos \left (x \right ) \sin \left (x \right )}{2}+\frac {x}{2}+c_1 +\frac {y}{2} = 0 \]
Mathematica. Time used: 0.416 (sec). Leaf size: 43
ode=D[y[x],x]*Cos[y[x]]*(Cos[y[x]]- Sin[A]*Sin[x])+Cos[x]*(Cos[x]-Sin[A]*Sin[y[x]])==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ \text {Solve}\left [4 \sin (A) \sin (x) \sin (y(x))-4 \left (\frac {y(x)}{2}+\frac {1}{4} \sin (2 y(x))\right )-2 x-\sin (2 x)=c_1,y(x)\right ] \]
Sympy
from sympy import * 
x = symbols("x") 
A = symbols("A") 
y = Function("y") 
ode = Eq((-sin(A)*sin(x) + cos(y(x)))*cos(y(x))*Derivative(y(x), x) + (-sin(A)*sin(y(x)) + cos(x))*cos(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out