29.25.16 problem 713

Internal problem ID [5303]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 25
Problem number : 713
Date solved : Sunday, March 30, 2025 at 07:52:38 AM
CAS classification : [[_homogeneous, `class G`], _rational]

\begin{align*} 2 x \left (x^{3}+y^{4}\right ) y^{\prime }&=\left (x^{3}+2 y^{4}\right ) y \end{align*}

Maple. Time used: 0.135 (sec). Leaf size: 281
ode:=2*x*(x^3+y(x)^4)*diff(y(x),x) = (x^3+2*y(x)^4)*y(x); 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= -\frac {2^{{3}/{4}} \left (\left (2 c_1 +x -\sqrt {x \left (4 c_1 +x \right )}\right ) x^{3} c_1^{3}\right )^{{1}/{4}}}{2 c_1} \\ y &= \frac {2^{{3}/{4}} \left (\left (2 c_1 +x -\sqrt {x \left (4 c_1 +x \right )}\right ) x^{3} c_1^{3}\right )^{{1}/{4}}}{2 c_1} \\ y &= -\frac {2^{{3}/{4}} \left (\left (2 c_1 +x +\sqrt {x \left (4 c_1 +x \right )}\right ) x^{3} c_1^{3}\right )^{{1}/{4}}}{2 c_1} \\ y &= \frac {2^{{3}/{4}} \left (\left (2 c_1 +x +\sqrt {x \left (4 c_1 +x \right )}\right ) x^{3} c_1^{3}\right )^{{1}/{4}}}{2 c_1} \\ y &= -\frac {i 2^{{3}/{4}} \left (\left (2 c_1 +x -\sqrt {x \left (4 c_1 +x \right )}\right ) x^{3} c_1^{3}\right )^{{1}/{4}}}{2 c_1} \\ y &= -\frac {i 2^{{3}/{4}} \left (\left (2 c_1 +x +\sqrt {x \left (4 c_1 +x \right )}\right ) x^{3} c_1^{3}\right )^{{1}/{4}}}{2 c_1} \\ y &= \frac {i 2^{{3}/{4}} \left (\left (2 c_1 +x -\sqrt {x \left (4 c_1 +x \right )}\right ) x^{3} c_1^{3}\right )^{{1}/{4}}}{2 c_1} \\ y &= \frac {i 2^{{3}/{4}} \left (\left (2 c_1 +x +\sqrt {x \left (4 c_1 +x \right )}\right ) x^{3} c_1^{3}\right )^{{1}/{4}}}{2 c_1} \\ \end{align*}
Mathematica. Time used: 3.898 (sec). Leaf size: 166
ode=2 x(x^3+y[x]^4)D[y[x],x]==(x^3+2 y[x]^4)y[x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to -\frac {\sqrt {c_1 x^2-x^{3/2} \sqrt {4+c_1{}^2 x}}}{\sqrt {2}} \\ y(x)\to \frac {\sqrt {c_1 x^2-x^{3/2} \sqrt {4+c_1{}^2 x}}}{\sqrt {2}} \\ y(x)\to -\frac {\sqrt {x^{3/2} \sqrt {4+c_1{}^2 x}+c_1 x^2}}{\sqrt {2}} \\ y(x)\to \frac {\sqrt {x^{3/2} \sqrt {4+c_1{}^2 x}+c_1 x^2}}{\sqrt {2}} \\ y(x)\to 0 \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(2*x*(x**3 + y(x)**4)*Derivative(y(x), x) - (x**3 + 2*y(x)**4)*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE Derivative(y(x), x) - (x**3 + 2*y(x)**4)*y(x)/(2*x*(x**3 + y(x)**4)) cannot be solved by the factorable group method