29.25.18 problem 715

Internal problem ID [5305]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 25
Problem number : 715
Date solved : Sunday, March 30, 2025 at 07:52:59 AM
CAS classification : [[_homogeneous, `class G`], _rational]

\begin{align*} \left (x^{2}-y^{5}\right ) y^{\prime }&=2 x y \end{align*}

Maple. Time used: 0.030 (sec). Leaf size: 25
ode:=(x^2-y(x)^5)*diff(y(x),x) = 2*x*y(x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = \operatorname {RootOf}\left (x^{8} \textit {\_Z}^{5}+4-{\mathrm e}^{\frac {8 c_1}{5}} \textit {\_Z} \right ) x^{2} \]
Mathematica. Time used: 2.041 (sec). Leaf size: 121
ode=(x^2-y[x]^5)D[y[x],x]==2 x y[x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \text {Root}\left [\text {$\#$1}^5+4 \text {$\#$1} c_1+4 x^2\&,1\right ] \\ y(x)\to \text {Root}\left [\text {$\#$1}^5+4 \text {$\#$1} c_1+4 x^2\&,2\right ] \\ y(x)\to \text {Root}\left [\text {$\#$1}^5+4 \text {$\#$1} c_1+4 x^2\&,3\right ] \\ y(x)\to \text {Root}\left [\text {$\#$1}^5+4 \text {$\#$1} c_1+4 x^2\&,4\right ] \\ y(x)\to \text {Root}\left [\text {$\#$1}^5+4 \text {$\#$1} c_1+4 x^2\&,5\right ] \\ y(x)\to 0 \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-2*x*y(x) + (x**2 - y(x)**5)*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE -2*x*y(x)/(x**2 - y(x)**5) + Derivative(y(x), x) cannot be solved by the factorable group method