29.25.2 problem 699

Internal problem ID [5289]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 25
Problem number : 699
Date solved : Sunday, March 30, 2025 at 07:51:32 AM
CAS classification : [_rational, [_1st_order, `_with_symmetry_[F(x)*G(y),0]`]]

\begin{align*} \left (5 x -y-7 x y^{3}\right ) y^{\prime }+5 y-y^{4}&=0 \end{align*}

Maple. Time used: 0.006 (sec). Leaf size: 34
ode:=(5*x-y(x)-7*x*y(x)^3)*diff(y(x),x)+5*y(x)-y(x)^4 = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ x +\frac {\frac {y^{5}}{5}-\frac {5 y^{2}}{2}-c_1}{y \left (y^{3}-5\right )^{2}} = 0 \]
Mathematica. Time used: 47.28 (sec). Leaf size: 342
ode=(5 x-y[x]-7 x y[x]^3)D[y[x],x]+5 y[x]-y[x]^4==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \text {Root}\left [10 \text {$\#$1}^7 x+2 \text {$\#$1}^5-100 \text {$\#$1}^4 x-25 \text {$\#$1}^2+250 \text {$\#$1} x-10 c_1\&,1\right ] \\ y(x)\to \text {Root}\left [10 \text {$\#$1}^7 x+2 \text {$\#$1}^5-100 \text {$\#$1}^4 x-25 \text {$\#$1}^2+250 \text {$\#$1} x-10 c_1\&,2\right ] \\ y(x)\to \text {Root}\left [10 \text {$\#$1}^7 x+2 \text {$\#$1}^5-100 \text {$\#$1}^4 x-25 \text {$\#$1}^2+250 \text {$\#$1} x-10 c_1\&,3\right ] \\ y(x)\to \text {Root}\left [10 \text {$\#$1}^7 x+2 \text {$\#$1}^5-100 \text {$\#$1}^4 x-25 \text {$\#$1}^2+250 \text {$\#$1} x-10 c_1\&,4\right ] \\ y(x)\to \text {Root}\left [10 \text {$\#$1}^7 x+2 \text {$\#$1}^5-100 \text {$\#$1}^4 x-25 \text {$\#$1}^2+250 \text {$\#$1} x-10 c_1\&,5\right ] \\ y(x)\to \text {Root}\left [10 \text {$\#$1}^7 x+2 \text {$\#$1}^5-100 \text {$\#$1}^4 x-25 \text {$\#$1}^2+250 \text {$\#$1} x-10 c_1\&,6\right ] \\ y(x)\to \text {Root}\left [10 \text {$\#$1}^7 x+2 \text {$\#$1}^5-100 \text {$\#$1}^4 x-25 \text {$\#$1}^2+250 \text {$\#$1} x-10 c_1\&,7\right ] \\ y(x)\to 0 \\ y(x)\to -\sqrt [3]{-5} \\ y(x)\to \sqrt [3]{5} \\ y(x)\to (-1)^{2/3} \sqrt [3]{5} \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq((-7*x*y(x)**3 + 5*x - y(x))*Derivative(y(x), x) - y(x)**4 + 5*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out