29.29.8 problem 830

Internal problem ID [5413]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 29
Problem number : 830
Date solved : Sunday, March 30, 2025 at 08:10:47 AM
CAS classification : [[_homogeneous, `class C`], _dAlembert]

\begin{align*} {y^{\prime }}^{2}&={\mathrm e}^{4 x -2 y} \left (y^{\prime }-1\right ) \end{align*}

Maple. Time used: 0.608 (sec). Leaf size: 253
ode:=diff(y(x),x)^2 = exp(4*x-2*y(x))*(diff(y(x),x)-1); 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} x -\frac {\sqrt {{\mathrm e}^{8 x -4 y}-4 \,{\mathrm e}^{4 x -2 y}}\, {\mathrm e}^{-4 x +2 y} \operatorname {arctanh}\left (\frac {1}{\sqrt {-4 \,{\mathrm e}^{-4 x +2 y}+1}}\right )}{2 \sqrt {-4 \,{\mathrm e}^{-4 x +2 y}+1}}+\frac {\ln \left ({\mathrm e}^{-2 x +y}\right )}{2}-\frac {\ln \left (2 \,{\mathrm e}^{-2 x +y}+1\right )}{4}-\frac {\ln \left (2 \,{\mathrm e}^{-2 x +y}-1\right )}{4}+\frac {\ln \left (4 \,{\mathrm e}^{-4 x +2 y}-1\right )}{4}-c_1 &= 0 \\ x +\frac {\ln \left ({\mathrm e}^{-2 x +y}\right )}{2}-\frac {\ln \left (2 \,{\mathrm e}^{-2 x +y}+1\right )}{4}-\frac {\ln \left (2 \,{\mathrm e}^{-2 x +y}-1\right )}{4}+\frac {\ln \left (4 \,{\mathrm e}^{-4 x +2 y}-1\right )}{4}+\frac {\sqrt {{\mathrm e}^{8 x -4 y}-4 \,{\mathrm e}^{4 x -2 y}}\, {\mathrm e}^{-4 x +2 y} \operatorname {arctanh}\left (\frac {1}{\sqrt {-4 \,{\mathrm e}^{-4 x +2 y}+1}}\right )}{2 \sqrt {-4 \,{\mathrm e}^{-4 x +2 y}+1}}-c_1 &= 0 \\ \end{align*}
Mathematica. Time used: 1.11 (sec). Leaf size: 197
ode=(D[y[x],x])^2==Exp[4 x -2 y[x]] (D[y[x],x]-1); 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} \text {Solve}\left [\frac {y(x)}{2}-\frac {e^{-2 x} \sqrt {e^{8 x}-4 e^{2 y(x)+4 x}} \text {arctanh}\left (\frac {e^{2 x}}{\sqrt {e^{4 x}-4 e^{2 y(x)}}}\right )}{2 \sqrt {e^{4 x}-4 e^{2 y(x)}}}&=c_1,y(x)\right ] \\ \text {Solve}\left [\frac {e^{-2 x} \sqrt {e^{8 x}-4 e^{2 y(x)+4 x}} \text {arctanh}\left (\frac {e^{2 x}}{\sqrt {e^{4 x}-4 e^{2 y(x)}}}\right )}{2 \sqrt {e^{4 x}-4 e^{2 y(x)}}}+\frac {y(x)}{2}&=c_1,y(x)\right ] \\ y(x)\to \frac {1}{2} \left (\log \left (\frac {e^{8 x}}{4}\right )-4 x\right ) \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq((1 - Derivative(y(x), x))*exp(4*x - 2*y(x)) + Derivative(y(x), x)**2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out