Internal
problem
ID
[5235]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Various
23
Problem
number
:
644
Date
solved
:
Sunday, March 30, 2025 at 07:06:42 AM
CAS
classification
:
[[_1st_order, _with_linear_symmetries], _rational]
ode:=(x*(a-x^2-y(x)^2)+y(x))*diff(y(x),x)+x-(a-x^2-y(x)^2)*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=(x*(a-x^2-y[x]^2)+y[x])*D[y[x],x]+x-(a-x^2-y[x]^2)*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") y = Function("y") ode = Eq(x + (x*(a - x**2 - y(x)**2) + y(x))*Derivative(y(x), x) - (a - x**2 - y(x)**2)*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out