29.24.26 problem 688

Internal problem ID [5279]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 24
Problem number : 688
Date solved : Sunday, March 30, 2025 at 07:46:02 AM
CAS classification : [[_homogeneous, `class A`], _exact, _rational, _dAlembert]

\begin{align*} \left (3 x^{3}+6 x^{2} y-3 x y^{2}+20 y^{3}\right ) y^{\prime }+4 x^{3}+9 x^{2} y+6 x y^{2}-y^{3}&=0 \end{align*}

Maple. Time used: 0.090 (sec). Leaf size: 50
ode:=(3*x^3+6*x^2*y(x)-3*x*y(x)^2+20*y(x)^3)*diff(y(x),x)+4*x^3+9*x^2*y(x)+6*x*y(x)^2-y(x)^3 = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {\operatorname {RootOf}\left (x^{4} c_1^{4}+3 x^{3} c_1^{3} \textit {\_Z} +3 x^{2} c_1^{2} \textit {\_Z}^{2}-x c_1 \,\textit {\_Z}^{3}+5 \textit {\_Z}^{4}-1\right )}{c_1} \]
Mathematica. Time used: 60.182 (sec). Leaf size: 2201
ode=(3 x^3+6 x^2 y[x]-3 x y[x]^2+20 y[x]^3)D[y[x],x]+4 x^3+9 x^2 y[x]+6 x y[x]^2-y[x]^3==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} \text {Solution too large to show}\end{align*}

Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(4*x**3 + 9*x**2*y(x) + 6*x*y(x)**2 + (3*x**3 + 6*x**2*y(x) - 3*x*y(x)**2 + 20*y(x)**3)*Derivative(y(x), x) - y(x)**3,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out