29.23.30 problem 661

Internal problem ID [5252]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 23
Problem number : 661
Date solved : Sunday, March 30, 2025 at 07:31:44 AM
CAS classification : [[_homogeneous, `class G`], _rational]

\begin{align*} x \left (3 x -7 y^{2}\right ) y^{\prime }+\left (5 x -3 y^{2}\right ) y&=0 \end{align*}

Maple. Time used: 0.340 (sec). Leaf size: 48
ode:=x*(3*x-7*y(x)^2)*diff(y(x),x)+(5*x-3*y(x)^2)*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \frac {1}{\operatorname {RootOf}\left (c_1 \,\textit {\_Z}^{7}-x^{{5}/{2}} \textit {\_Z}^{4}+x^{{3}/{2}}\right )^{2}} \\ y &= \frac {1}{\operatorname {RootOf}\left (c_1 \,\textit {\_Z}^{7}+x^{{5}/{2}} \textit {\_Z}^{4}-x^{{3}/{2}}\right )^{2}} \\ \end{align*}
Mathematica. Time used: 4.497 (sec). Leaf size: 288
ode=x(3 x-7 y[x]^2)D[y[x],x]+(5  x-3 y[x]^2)y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \text {Root}\left [4 \text {$\#$1}^7 x^3-8 \text {$\#$1}^5 x^4+4 \text {$\#$1}^3 x^5-c_1{}^2\&,1\right ] \\ y(x)\to \text {Root}\left [4 \text {$\#$1}^7 x^3-8 \text {$\#$1}^5 x^4+4 \text {$\#$1}^3 x^5-c_1{}^2\&,2\right ] \\ y(x)\to \text {Root}\left [4 \text {$\#$1}^7 x^3-8 \text {$\#$1}^5 x^4+4 \text {$\#$1}^3 x^5-c_1{}^2\&,3\right ] \\ y(x)\to \text {Root}\left [4 \text {$\#$1}^7 x^3-8 \text {$\#$1}^5 x^4+4 \text {$\#$1}^3 x^5-c_1{}^2\&,4\right ] \\ y(x)\to \text {Root}\left [4 \text {$\#$1}^7 x^3-8 \text {$\#$1}^5 x^4+4 \text {$\#$1}^3 x^5-c_1{}^2\&,5\right ] \\ y(x)\to \text {Root}\left [4 \text {$\#$1}^7 x^3-8 \text {$\#$1}^5 x^4+4 \text {$\#$1}^3 x^5-c_1{}^2\&,6\right ] \\ y(x)\to \text {Root}\left [4 \text {$\#$1}^7 x^3-8 \text {$\#$1}^5 x^4+4 \text {$\#$1}^3 x^5-c_1{}^2\&,7\right ] \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*(3*x - 7*y(x)**2)*Derivative(y(x), x) + (5*x - 3*y(x)**2)*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE Derivative(y(x), x) - (-5*x + 3*y(x)**2)*y(x)/(x*(3*x - 7*y(x)**2)) cannot be solved by the factorable group method