29.22.15 problem 623

Internal problem ID [5215]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 22
Problem number : 623
Date solved : Sunday, March 30, 2025 at 06:53:36 AM
CAS classification : [[_homogeneous, `class C`], _rational]

\begin{align*} \left (1-3 x -y\right )^{2} y^{\prime }&=\left (1-2 y\right ) \left (3-6 x -4 y\right ) \end{align*}

Maple. Time used: 0.098 (sec). Leaf size: 75
ode:=(1-3*x-y(x))^2*diff(y(x),x) = (1-2*y(x))*(3-6*x-4*y(x)); 
dsolve(ode,y(x), singsol=all);
 
\[ 3 \ln \left (\frac {1-2 y}{6 x -1}\right )-4 \ln \left (2\right )-3 \ln \left (\frac {-y+3 x}{6 x -1}\right )-\ln \left (\frac {2-3 y-3 x}{6 x -1}\right )-\ln \left (6 x -1\right )-c_1 = 0 \]
Mathematica. Time used: 60.197 (sec). Leaf size: 1089
ode=(1-3 x-y[x])^2 D[y[x],x]==(1-2 y[x])(3-6 x-4 y[x]); 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} \text {Solution too large to show}\end{align*}

Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq((2*y(x) - 1)*(-6*x - 4*y(x) + 3) + (-3*x - y(x) + 1)**2*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out