29.26.6 problem 742

Internal problem ID [5327]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 26
Problem number : 742
Date solved : Sunday, March 30, 2025 at 07:59:25 AM
CAS classification : [[_1st_order, _with_linear_symmetries]]

\begin{align*} \left (1+\left (x +y\right ) \tan \left (y\right )\right ) y^{\prime }+1&=0 \end{align*}

Maple. Time used: 0.003 (sec). Leaf size: 13
ode:=(1+(x+y(x))*tan(y(x)))*diff(y(x),x)+1 = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ x -\cos \left (y\right ) c_1 +y = 0 \]
Mathematica. Time used: 0.297 (sec). Leaf size: 66
ode=(1+(x+y[x])*Tan[y[x]])*D[y[x],x]+1==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ \text {Solve}\left [x=\cos (y(x)) \left (-y(x) \sec (y(x))-\coth ^{-1}(\sin (y(x)))-\log \left (\cos \left (\frac {y(x)}{2}\right )-\sin \left (\frac {y(x)}{2}\right )\right )+\log \left (\sin \left (\frac {y(x)}{2}\right )+\cos \left (\frac {y(x)}{2}\right )\right )\right )+c_1 \cos (y(x)),y(x)\right ] \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(((x + y(x))*tan(y(x)) + 1)*Derivative(y(x), x) + 1,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out