29.28.22 problem 820

Internal problem ID [5403]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 28
Problem number : 820
Date solved : Sunday, March 30, 2025 at 08:10:17 AM
CAS classification : [[_1st_order, `_with_symmetry_[F(x),G(y)]`]]

\begin{align*} {y^{\prime }}^{2}-x y^{\prime } y+y^{2} \ln \left (a y\right )&=0 \end{align*}

Maple. Time used: 0.080 (sec). Leaf size: 43
ode:=diff(y(x),x)^2-x*diff(y(x),x)*y(x)+y(x)^2*ln(a*y(x)) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \frac {{\mathrm e}^{\frac {x^{2}}{4}}}{a} \\ y &= \frac {{\mathrm e}^{c_1 \left (-c_1 +x \right )}}{a} \\ y &= \frac {{\mathrm e}^{-c_1 \left (c_1 +x \right )}}{a} \\ \end{align*}
Mathematica. Time used: 0.303 (sec). Leaf size: 30
ode=(D[y[x],x])^2-x*D[y[x],x]*y[x]+y[x]^2*Log[a*y[x]]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \frac {e^{\frac {1}{4} c_1 (2 x-c_1)}}{a} \\ y(x)\to 0 \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
y = Function("y") 
ode = Eq(-x*y(x)*Derivative(y(x), x) + y(x)**2*log(a*y(x)) + Derivative(y(x), x)**2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out