29.24.25 problem 687

Internal problem ID [5278]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 24
Problem number : 687
Date solved : Sunday, March 30, 2025 at 07:45:58 AM
CAS classification : [_rational]

\begin{align*} \left (x^{2}-x^{3}+3 x y^{2}+2 y^{3}\right ) y^{\prime }+2 x^{3}+3 x^{2} y+y^{2}-y^{3}&=0 \end{align*}

Maple. Time used: 0.015 (sec). Leaf size: 405
ode:=(x^2-x^3+3*x*y(x)^2+2*y(x)^3)*diff(y(x),x)+2*x^3+3*x^2*y(x)+y(x)^2-y(x)^3 = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \frac {\left (-108 x^{3}-108 c_1 x +12 \sqrt {81 x^{6}+162 c_1 \,x^{4}+12 x^{3}+\left (81 c_1^{2}+36 c_1 \right ) x^{2}+36 c_1^{2} x +12 c_1^{3}}\right )^{{2}/{3}}-12 c_1 -12 x}{6 \left (-108 x^{3}-108 c_1 x +12 \sqrt {81 x^{6}+162 c_1 \,x^{4}+12 x^{3}+\left (81 c_1^{2}+36 c_1 \right ) x^{2}+36 c_1^{2} x +12 c_1^{3}}\right )^{{1}/{3}}} \\ y &= -\frac {\left (\frac {i \sqrt {3}}{12}+\frac {1}{12}\right ) \left (-108 x^{3}-108 c_1 x +12 \sqrt {81 x^{6}+162 c_1 \,x^{4}+12 x^{3}+\left (81 c_1^{2}+36 c_1 \right ) x^{2}+36 c_1^{2} x +12 c_1^{3}}\right )^{{2}/{3}}+\left (c_1 +x \right ) \left (i \sqrt {3}-1\right )}{\left (-108 x^{3}-108 c_1 x +12 \sqrt {81 x^{6}+162 c_1 \,x^{4}+12 x^{3}+\left (81 c_1^{2}+36 c_1 \right ) x^{2}+36 c_1^{2} x +12 c_1^{3}}\right )^{{1}/{3}}} \\ y &= \frac {\frac {\left (i \sqrt {3}-1\right ) \left (-108 x^{3}-108 c_1 x +12 \sqrt {81 x^{6}+162 c_1 \,x^{4}+12 x^{3}+\left (81 c_1^{2}+36 c_1 \right ) x^{2}+36 c_1^{2} x +12 c_1^{3}}\right )^{{2}/{3}}}{12}+\left (c_1 +x \right ) \left (1+i \sqrt {3}\right )}{\left (-108 x^{3}-108 c_1 x +12 \sqrt {81 x^{6}+162 c_1 \,x^{4}+12 x^{3}+\left (81 c_1^{2}+36 c_1 \right ) x^{2}+36 c_1^{2} x +12 c_1^{3}}\right )^{{1}/{3}}} \\ \end{align*}
Mathematica. Time used: 8.91 (sec). Leaf size: 368
ode=(x^2-x^3+3 x y[x]^2+2 y[x]^3)D[y[x],x]+2 x^3+3 x^2 y[x]+y[x]^2-y[x]^3==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \frac {\sqrt [3]{2} (x+c_1)}{\sqrt [3]{27 x^3+\sqrt {729 \left (x^3+c_1 x\right ){}^2+108 (x+c_1){}^3}+27 c_1 x}}-\frac {\sqrt [3]{27 x^3+\sqrt {729 \left (x^3+c_1 x\right ){}^2+108 (x+c_1){}^3}+27 c_1 x}}{3 \sqrt [3]{2}} \\ y(x)\to \frac {2^{2/3} \left (1-i \sqrt {3}\right ) \left (27 x^3+\sqrt {729 \left (x^3+c_1 x\right ){}^2+108 (x+c_1){}^3}+27 c_1 x\right ){}^{2/3}-6 i \sqrt [3]{2} \left (\sqrt {3}-i\right ) (x+c_1)}{12 \sqrt [3]{27 x^3+\sqrt {729 \left (x^3+c_1 x\right ){}^2+108 (x+c_1){}^3}+27 c_1 x}} \\ y(x)\to \frac {2^{2/3} \left (1+i \sqrt {3}\right ) \left (27 x^3+\sqrt {729 \left (x^3+c_1 x\right ){}^2+108 (x+c_1){}^3}+27 c_1 x\right ){}^{2/3}+6 i \sqrt [3]{2} \left (\sqrt {3}+i\right ) (x+c_1)}{12 \sqrt [3]{27 x^3+\sqrt {729 \left (x^3+c_1 x\right ){}^2+108 (x+c_1){}^3}+27 c_1 x}} \\ y(x)\to -x \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(2*x**3 + 3*x**2*y(x) + (-x**3 + x**2 + 3*x*y(x)**2 + 2*y(x)**3)*Derivative(y(x), x) - y(x)**3 + y(x)**2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out