29.28.3 problem 800

Internal problem ID [5384]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 28
Problem number : 800
Date solved : Sunday, March 30, 2025 at 08:04:06 AM
CAS classification : [[_homogeneous, `class G`]]

\begin{align*} {y^{\prime }}^{2}+a x y^{\prime }+b \,x^{2}+c y&=0 \end{align*}

Maple
ode:=diff(y(x),x)^2+a*x*diff(y(x),x)+b*x^2+c*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ \text {No solution found} \]
Mathematica. Time used: 2.812 (sec). Leaf size: 1085
ode=(D[y[x],x])^2+a*x*D[y[x],x]+b*x^2+c*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} \text {Solution too large to show}\end{align*}

Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
b = symbols("b") 
c = symbols("c") 
y = Function("y") 
ode = Eq(a*x*Derivative(y(x), x) + b*x**2 + c*y(x) + Derivative(y(x), x)**2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out