29.27.25 problem 791

Internal problem ID [5375]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 27
Problem number : 791
Date solved : Sunday, March 30, 2025 at 08:03:53 AM
CAS classification : [[_1st_order, _with_linear_symmetries], _dAlembert]

\begin{align*} {y^{\prime }}^{2}+2 x y^{\prime }-y&=0 \end{align*}

Maple. Time used: 0.030 (sec). Leaf size: 642
ode:=diff(y(x),x)^2+2*x*diff(y(x),x)-y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} \text {Solution too large to show}\end{align*}

Mathematica. Time used: 60.152 (sec). Leaf size: 931
ode=(D[y[x],x])^2+2*x*D[y[x],x]-y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} \text {Solution too large to show}\end{align*}

Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(2*x*Derivative(y(x), x) - y(x) + Derivative(y(x), x)**2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE x - sqrt(x**2 + y(x)) + Derivative(y(x), x) cannot be solved by the factorable group method