29.28.16 problem 814

Internal problem ID [5397]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 28
Problem number : 814
Date solved : Sunday, March 30, 2025 at 08:06:02 AM
CAS classification : [_quadrature]

\begin{align*} {y^{\prime }}^{2}-\left (1+4 y\right ) y^{\prime }+\left (1+4 y\right ) y&=0 \end{align*}

Maple. Time used: 0.126 (sec). Leaf size: 137
ode:=diff(y(x),x)^2-(1+4*y(x))*diff(y(x),x)+(1+4*y(x))*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= -{\frac {1}{4}} \\ y &= -\frac {\sqrt {-{\mathrm e}^{-2 x} c_1}\, {\mathrm e}^{2 x}+c_1}{c_1 \sqrt {-{\mathrm e}^{-2 x} c_1}} \\ y &= \frac {-\sqrt {-{\mathrm e}^{-2 x} c_1}\, {\mathrm e}^{2 x}+c_1}{\sqrt {-{\mathrm e}^{-2 x} c_1}\, c_1} \\ y &= \frac {-\sqrt {-{\mathrm e}^{-2 x} c_1}\, {\mathrm e}^{2 x}+c_1}{\sqrt {-{\mathrm e}^{-2 x} c_1}\, c_1} \\ y &= -\frac {\sqrt {-{\mathrm e}^{-2 x} c_1}\, {\mathrm e}^{2 x}+c_1}{c_1 \sqrt {-{\mathrm e}^{-2 x} c_1}} \\ \end{align*}
Mathematica. Time used: 0.189 (sec). Leaf size: 67
ode=(D[y[x],x])^2-(1+4*y[x])*D[y[x],x]+(1+4*y[x])*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \frac {1}{4} e^{x-4 c_1} \left (e^x+2 e^{2 c_1}\right ) \\ y(x)\to \frac {1}{4} e^{x+2 c_1} \left (-2+e^{x+2 c_1}\right ) \\ y(x)\to -\frac {1}{4} \\ y(x)\to 0 \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq((4*y(x) + 1)*y(x) - (4*y(x) + 1)*Derivative(y(x), x) + Derivative(y(x), x)**2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out