Internal
problem
ID
[5323]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Various
26
Problem
number
:
734
Date
solved
:
Sunday, March 30, 2025 at 07:57:10 AM
CAS
classification
:
[[_1st_order, _with_linear_symmetries]]
ode:=(x*(1+x^2+y(x)^2)^(1/2)-y(x)*(x^2+y(x)^2))*diff(y(x),x) = x*(x^2+y(x)^2)+y(x)*(1+x^2+y(x)^2)^(1/2); dsolve(ode,y(x), singsol=all);
ode=(x*Sqrt[1+x^2+y[x]^2]-y[x]*(x^2+y[x]^2))*D[y[x],x]==x*(x^2+y[x]^2)+y[x]*Sqrt[1+x^2+y[x]^2]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x*(x**2 + y(x)**2) + (x*sqrt(x**2 + y(x)**2 + 1) - (x**2 + y(x)**2)*y(x))*Derivative(y(x), x) - sqrt(x**2 + y(x)**2 + 1)*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out