5.3.43 Problems 4201 to 4300

Table 5.119: Problems not solved by Sympy

#

ODE

Mathematica

Maple

Sympy

12490

\[ {} x y^{\prime \prime }+a x y^{\prime }+a y = 0 \]

12491

\[ {} x y^{\prime \prime }+\left (-x +b \right ) y^{\prime }-a y = 0 \]

12492

\[ {} x y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+c \left (\left (a -c \right ) x +b \right ) y = 0 \]

12493

\[ {} x y^{\prime \prime }+\left (2 a x +b \right ) y^{\prime }+a \left (a x +b \right ) y = 0 \]

12494

\[ {} x y^{\prime \prime }+\left (x \left (a +b \right )+m +n \right ) y^{\prime }+\left (a b x +a n +b m \right ) y = 0 \]

12495

\[ {} x y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+\left (c x +d \right ) y = 0 \]

12496

\[ {} x y^{\prime \prime }-\left (a x +1\right ) y^{\prime }-b \,x^{2} \left (b x +a \right ) y = 0 \]

12497

\[ {} x y^{\prime \prime }-\left (2 a x +1\right ) y^{\prime }+\left (b \,x^{3}+a^{2} x +a \right ) y = 0 \]

12498

\[ {} x y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+c x \left (-c \,x^{2}+a x +b +1\right ) = 0 \]

12499

\[ {} x y^{\prime \prime }-\left (2 a x +1\right ) y^{\prime }+b \,x^{3} y = 0 \]

12500

\[ {} x y^{\prime \prime }+\left (a b \,x^{2}+b -5\right ) y^{\prime }+2 a^{2} \left (b -2\right ) x^{3} y = 0 \]

12501

\[ {} x y^{\prime \prime }+\left (a \,x^{2}+b x \right ) y^{\prime }-\left (a c \,x^{2}+\left (b c +c^{2}+a \right ) x +b +2 c \right ) y = 0 \]

12502

\[ {} x y^{\prime \prime }+\left (a \,x^{2}+b x +2\right ) y^{\prime }+b y = 0 \]

12503

\[ {} x y^{\prime \prime }+\left (a \,x^{2}+b x +c \right ) y^{\prime }+\left (2 a x +b \right ) y = 0 \]

12504

\[ {} x y^{\prime \prime }+\left (a \,x^{2}+b x +c \right ) y^{\prime }+\left (c -1\right ) \left (a x +b \right ) y = 0 \]

12505

\[ {} x y^{\prime \prime }+\left (a \,x^{2}+b x +c \right ) y^{\prime }+\left (A \,x^{2}+B x +\operatorname {C0} \right ) y = 0 \]

12506

\[ {} x y^{\prime \prime }+\left (a \,x^{2}+b x +2\right ) y^{\prime }+\left (c \,x^{2}+d x +b \right ) y = 0 \]

12507

\[ {} x y^{\prime \prime }+\left (a \,x^{3}+b \right ) y^{\prime }+a \left (b -1\right ) x^{2} y = 0 \]

12508

\[ {} x y^{\prime \prime }+\left (a \,x^{2}+b \right ) x y^{\prime }+\left (3 a \,x^{2}+b \right ) y = 0 \]

12509

\[ {} x y^{\prime \prime }+\left (a \,x^{3}+b \,x^{2}+2\right ) y^{\prime }+b x y = 0 \]

12510

\[ {} x y^{\prime \prime }+\left (a \,x^{3} b +b \,x^{2}+a x -1\right ) y^{\prime }+a^{2} b \,x^{3} y = 0 \]

12511

\[ {} x y^{\prime \prime }+\left (a \,x^{3}+b \,x^{2}+c x +d \right ) y^{\prime }+\left (d -1\right ) \left (a \,x^{2}+b x +c \right ) y = 0 \]

12512

\[ {} x y^{\prime \prime }+a \,x^{n} y^{\prime }+\left (a b \,x^{n}-a \,x^{n -1}-b^{2} x +2 b \right ) y = 0 \]

12513

\[ {} x y^{\prime \prime }+\left (a \,x^{n}+2\right ) y^{\prime }+a \,x^{n -1} y = 0 \]

12514

\[ {} x y^{\prime \prime }+\left (x^{n}+1-n \right ) y^{\prime }+b \,x^{2 n -1} y = 0 \]

12515

\[ {} x y^{\prime \prime }+\left (a \,x^{n}+b \right ) y^{\prime }+a n \,x^{n -1} y = 0 \]

12516

\[ {} x y^{\prime \prime }+\left (a \,x^{n}+b \right ) y^{\prime }+a \left (b -1\right ) x^{n -1} y = 0 \]

12517

\[ {} x y^{\prime \prime }+\left (a \,x^{n}+b \right ) y^{\prime }+a \left (b +n -1\right ) x^{n -1} y = 0 \]

12518

\[ {} x y^{\prime \prime }+\left (a \,x^{n}+b \right ) y^{\prime }+c \left (a \,x^{n}-c x +b \right ) y = 0 \]

12519

\[ {} x y^{\prime \prime }+\left (a b \,x^{n}+b -3 n +1\right ) y^{\prime }+a^{2} n \left (b -n \right ) x^{2 n -1} y = 0 \]

12520

\[ {} x y^{\prime \prime }+\left (a \,x^{n}+b \right ) y^{\prime }+\left (c \,x^{2 n -1}+d \,x^{n -1}\right ) y = 0 \]

12521

\[ {} x y^{\prime \prime }+\left (a \,x^{n}+b \,x^{n -1}+2\right ) y^{\prime }+b \,x^{n -2} y = 0 \]

12522

\[ {} x y^{\prime \prime }+\left (a \,x^{n}+b x \right ) y^{\prime }+\left (a b \,x^{n}+a n \,x^{n -1}-b \right ) y = 0 \]

12523

\[ {} x y^{\prime \prime }+\left (a b \,x^{n}+b \,x^{n -1}+a x -1\right ) y^{\prime }+a^{2} b \,x^{n} y = 0 \]

12524

\[ {} x y^{\prime \prime }+\left (a \,x^{n}+b \,x^{m}+c \right ) y^{\prime }+\left (c -1\right ) \left (a \,x^{n -1}+b \,x^{m -1}\right ) y = 0 \]

12525

\[ {} x y^{\prime \prime }+\left (a b \,x^{m +n}+a n \,x^{n}+b \,x^{m}+1-2 n \right ) y^{\prime }+a^{2} b n \,x^{2 n +m -1} y = 0 \]

12526

\[ {} \left (x +a \right ) y^{\prime \prime }+\left (b x +c \right ) y^{\prime }+b y = 0 \]

12527

\[ {} \left (a_{1} x +a_{0} \right ) y^{\prime \prime }+\left (b_{1} x +b_{0} \right ) y^{\prime }-m b_{1} y = 0 \]

12528

\[ {} \left (a x +b \right ) y^{\prime \prime }+s \left (c x +d \right ) y^{\prime }-s^{2} \left (\left (a +c \right ) x +b +d \right ) y = 0 \]

12529

\[ {} \left (a_{2} x +b_{2} \right ) y^{\prime \prime }+\left (a_{1} x +b_{1} \right ) y^{\prime }+\left (a_{0} x +b_{0} \right ) y = 0 \]

12530

\[ {} \left (x +\gamma \right ) y^{\prime \prime }+\left (a \,x^{n}+b \,x^{m}+c \right ) y^{\prime }+\left (a n \,x^{n -1}+b m \,x^{m -1}\right ) y = 0 \]

12535

\[ {} x^{2} y^{\prime \prime }-\left (a^{2} x^{2}+2 a b x +b^{2}-b \right ) y = 0 \]

12536

\[ {} x^{2} y^{\prime \prime }+\left (a \,x^{2}+b x +c \right ) y = 0 \]

12538

\[ {} x^{2} y^{\prime \prime }-\left (a^{2} x^{4}+a \left (2 b -1\right ) x^{2}+b \left (1+b \right )\right ) y = 0 \]

12540

\[ {} x^{2} y^{\prime \prime }-\left (a^{2} x^{2 n}+a \left (2 b +n -1\right ) x^{n}+b \left (b -1\right )\right ) y = 0 \]

12541

\[ {} x^{2} y^{\prime \prime }+\left (a \,x^{2 n}+b \,x^{n}+c \right ) y = 0 \]

12542

\[ {} x^{2} y^{\prime \prime }+\left (a \,x^{3 n}+b \,x^{2 n}+\frac {1}{4}-\frac {n^{2}}{4}\right ) y = 0 \]

12543

\[ {} x^{2} y^{\prime \prime }+\left (a \,x^{2 n} \left (b \,x^{n}+c \right )^{m}+\frac {1}{4}-\frac {n^{2}}{4}\right ) y = 0 \]

12546

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }-\left (x^{2}+\left (n +\frac {1}{2}\right )^{2}\right ) y = 0 \]

12550

\[ {} x^{2} y^{\prime \prime }-2 a x y^{\prime }+\left (b^{2} x^{2}+a \left (a +1\right )\right ) y = 0 \]

12551

\[ {} x^{2} y^{\prime \prime }-2 a x y^{\prime }+\left (-b^{2} x^{2}+a \left (a +1\right )\right ) y = 0 \]

12552

\[ {} x^{2} y^{\prime \prime }+\lambda x y^{\prime }+\left (a \,x^{2}+b x +c \right ) y = 0 \]

12553

\[ {} x^{2} y^{\prime \prime }+a x y^{\prime }+\left (b \,x^{n}+c \right ) y = 0 \]

12554

\[ {} x^{2} y^{\prime \prime }+a x y^{\prime }+x^{n} \left (b \,x^{n}+c \right ) y = 0 \]

12555

\[ {} x^{2} y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+c y = 0 \]

12556

\[ {} x^{2} y^{\prime \prime }+a \,x^{2} y^{\prime }+\left (b \,x^{2}+c x +d \right ) y = 0 \]

12557

\[ {} x^{2} y^{\prime \prime }+\left (a \,x^{2}+b \right ) y^{\prime }+c \left (\left (a -c \right ) x^{2}+b \right ) y = 0 \]

12559

\[ {} x^{2} y^{\prime \prime }+\left (a \,x^{2}+b x \right ) y^{\prime }+\left (k \left (a -k \right ) x^{2}+\left (a n +b k -2 k n \right ) x +n \left (b -n -1\right )\right ) y = 0 \]

12560

\[ {} a_{2} x^{2} y^{\prime \prime }+\left (a_{1} x^{2}+b_{1} x \right ) y^{\prime }+\left (a_{0} x^{2}+b_{0} x +c_{0} \right ) y = 0 \]

12561

\[ {} x^{2} y^{\prime \prime }+\left (a \,x^{2}+\left (a b -1\right ) x +b \right ) y^{\prime }+y a^{2} b x = 0 \]

12562

\[ {} x^{2} y^{\prime \prime }-2 x \left (x^{2}-a \right ) y^{\prime }+\left (2 n \,x^{2}+\left (\left (-1\right )^{n}-1\right ) a \right ) y = 0 \]

12563

\[ {} x^{2} y^{\prime \prime }+x \left (a \,x^{2}+b x +c \right ) y^{\prime }+\left (A \,x^{3}+B \,x^{2}+C x +d \right ) y = 0 \]

12564

\[ {} x^{2} y^{\prime \prime }+a \,x^{n} y^{\prime }-\left (a b \,x^{n}+a c \,x^{n -1}+b^{2} x^{2}+2 b x c +c^{2}-c \right ) y = 0 \]

12565

\[ {} x^{2} y^{\prime \prime }+a \,x^{n} y^{\prime }+\left (a b \,x^{n +2 m}-b^{2} x^{4 m +2}+a m \,x^{n -1}-m^{2}-m \right ) y = 0 \]

12566

\[ {} x^{2} y^{\prime \prime }+\left (a \,x^{n}+b \right ) y^{\prime } x +b \left (a \,x^{n}-1\right ) y = 0 \]

12567

\[ {} x^{2} y^{\prime \prime }+\left (a \,x^{n}+b \right ) y^{\prime } x +\left (\alpha \,x^{2 n}+\beta \,x^{n}+\gamma \right ) y = 0 \]

12568

\[ {} x^{2} y^{\prime \prime }+x \left (2 a \,x^{n}+b \right ) y^{\prime }+\left (a^{2} x^{2 n}+a \left (b +n -1\right ) x^{n}+\alpha \,x^{2 m}+\beta \,x^{m}+\gamma \right ) y = 0 \]

12569

\[ {} x^{2} y^{\prime \prime }+\left (a \,x^{n +2}+b \,x^{2}+c \right ) y^{\prime }+\left (a n \,x^{n +1}+a c \,x^{n}+b c \right ) y = 0 \]

12571

\[ {} \left (-a^{2}+x^{2}\right ) y^{\prime \prime }+b y^{\prime }-6 y = 0 \]

12572

\[ {} \left (x^{2}-1\right ) y^{\prime \prime }+x y^{\prime }+a y = 0 \]

12573

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+n^{2} y = 0 \]

12574

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+n \left (n +1\right ) y = 0 \]

12575

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+\nu \left (\nu +1\right ) y = 0 \]

12576

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }-3 x y^{\prime }+n \left (n +2\right ) y = 0 \]

12577

\[ {} \left (x^{2}-1\right ) y^{\prime \prime }+2 \left (n +1\right ) x y^{\prime }-\left (\nu +n +1\right ) \left (\nu -n \right ) y = 0 \]

12578

\[ {} \left (x^{2}-1\right ) y^{\prime \prime }-2 \left (n -1\right ) x y^{\prime }-\left (\nu -n +1\right ) \left (\nu +n \right ) y = 0 \]

12579

\[ {} \left (x^{2}-1\right ) y^{\prime \prime }+\left (2 a +1\right ) y^{\prime }-b \left (2 a +b \right ) y = 0 \]

12580

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }+\left (2 a -3\right ) x y^{\prime }+\left (n +1\right ) \left (n +2 a -1\right ) y = 0 \]

12581

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }+\left (\beta -\alpha -\left (\alpha +\beta +2\right ) x \right ) y^{\prime }+n \left (n +\alpha +\beta +1\right ) y = 0 \]

12582

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }+\left (\alpha -\beta +\left (\alpha +\beta -2\right ) x \right ) y^{\prime }+\left (n +1\right ) \left (n +\alpha +\beta \right ) y = 0 \]

12583

\[ {} \left (a \,x^{2}+b \right ) y^{\prime \prime }+a x y^{\prime }+c y = 0 \]

12584

\[ {} \left (x^{2}+a \right ) y^{\prime \prime }+2 b x y^{\prime }+2 \left (b -1\right ) y = 0 \]

12585

\[ {} \left (-a^{2}+x^{2}\right ) y^{\prime \prime }+2 b x y^{\prime }+b \left (b -1\right ) y = 0 \]

12586

\[ {} \left (a^{2}+x^{2}\right ) y^{\prime \prime }+2 b x y^{\prime }+b \left (b -1\right ) y = 0 \]

12587

\[ {} \left (a \,x^{2}+b \right ) y^{\prime \prime }+\left (2 n +1\right ) a x y^{\prime }+c y = 0 \]

12588

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+\left (2 a \,x^{2}+b \right ) y = 0 \]

12589

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+c y = 0 \]

12590

\[ {} \left (a \,x^{2}+b \right ) y^{\prime \prime }+\left (c \,x^{2}+d \right ) y^{\prime }+\lambda \left (\left (-a \lambda +c \right ) x^{2}+d -\lambda b \right ) y = 0 \]

12591

\[ {} \left (a \,x^{2}+b \right ) y^{\prime \prime }+\left (\lambda \left (a +c \right ) x^{2}+\left (c -a \right ) x +2 \lambda b \right ) y^{\prime }+\lambda ^{2} \left (c \,x^{2}+b \right ) y = 0 \]

12592

\[ {} x \left (x -1\right ) y^{\prime \prime }+\left (\left (\alpha +\beta +1\right ) x -\gamma \right ) y^{\prime }+\alpha \beta y = 0 \]

12593

\[ {} x \left (x +a \right ) y^{\prime \prime }+\left (b x +c \right ) y^{\prime }+d y = 0 \]

12594

\[ {} 2 x \left (x -1\right ) y^{\prime \prime }+\left (2 x -1\right ) y^{\prime }+\left (a x +b \right ) y = 0 \]

12595

\[ {} \left (2 a x +x^{2}+b \right ) y^{\prime \prime }+\left (x +a \right ) y^{\prime }-m^{2} y = 0 \]

12596

\[ {} \left (a \,x^{2}+b x +c \right ) y^{\prime \prime }+\left (d x +k \right ) y^{\prime }+\left (d -2 a \right ) y = 0 \]

12597

\[ {} \left (a \,x^{2}+b x +c \right ) y^{\prime \prime }+\left (k x +d \right ) y^{\prime }-k y = 0 \]

12598

\[ {} \left (a \,x^{2}+2 b x +c \right ) y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+d y = 0 \]

12599

\[ {} \left (a \,x^{2}+2 b x +c \right ) y^{\prime \prime }+3 \left (a x +b \right ) y^{\prime }+d y = 0 \]

12600

\[ {} \left (a_{2} x^{2}+b_{2} x +c_{2} \right ) y^{\prime \prime }+\left (b_{1} x +c_{1} \right ) y^{\prime }+c_{0} y = 0 \]

12601

\[ {} \left (a \,x^{2}+b x +c \right ) y^{\prime \prime }-\left (-k^{2}+x^{2}\right ) y^{\prime }+\left (x +k \right ) y = 0 \]

12602

\[ {} \left (a \,x^{2}+b x +c \right ) y^{\prime \prime }+\left (k^{3}+x^{3}\right ) y^{\prime }-\left (k^{2}-k x +x^{2}\right ) y = 0 \]