61.29.24 problem 133

Internal problem ID [12554]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 2, Second-Order Differential Equations. section 2.1.2-4
Problem number : 133
Date solved : Monday, March 31, 2025 at 05:38:49 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x^{2} y^{\prime \prime }+a x y^{\prime }+x^{n} \left (b \,x^{n}+c \right ) y&=0 \end{align*}

Maple. Time used: 0.041 (sec). Leaf size: 78
ode:=x^2*diff(diff(y(x),x),x)+a*x*diff(y(x),x)+x^n*(b*x^n+c)*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \left (\operatorname {WhittakerW}\left (-\frac {i c}{2 n \sqrt {b}}, \frac {a -1}{2 n}, \frac {2 i \sqrt {b}\, x^{n}}{n}\right ) c_2 +\operatorname {WhittakerM}\left (-\frac {i c}{2 n \sqrt {b}}, \frac {a -1}{2 n}, \frac {2 i \sqrt {b}\, x^{n}}{n}\right ) c_1 \right ) x^{-\frac {a}{2}+\frac {1}{2}-\frac {n}{2}} \]
Mathematica. Time used: 0.153 (sec). Leaf size: 165
ode=x^2*D[y[x],{x,2}]+a*x*D[y[x],x]+x^n*(b*x^n+c)*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to 2^{\frac {a+n-1}{2 n}} x^{\frac {1}{2} (-a-n+1)} \left (x^n\right )^{\frac {a+n-1}{2 n}} e^{\frac {i \sqrt {b} x^n}{n}} \left (c_1 \operatorname {HypergeometricU}\left (-\frac {-a+\frac {i c}{\sqrt {b}}-n+1}{2 n},\frac {a+n-1}{n},-\frac {2 i \sqrt {b} x^n}{n}\right )+c_2 L_{-\frac {a-\frac {i c}{\sqrt {b}}+n-1}{2 n}}^{\frac {a-1}{n}}\left (-\frac {2 i \sqrt {b} x^n}{n}\right )\right ) \]
Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
b = symbols("b") 
c = symbols("c") 
n = symbols("n") 
y = Function("y") 
ode = Eq(a*x*Derivative(y(x), x) + x**2*Derivative(y(x), (x, 2)) + x**n*(b*x**n + c)*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
ValueError : Expected Expr or iterable but got None