61.28.43 problem 103

Internal problem ID [12524]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 2, Second-Order Differential Equations. section 2.1.2-3
Problem number : 103
Date solved : Monday, March 31, 2025 at 05:37:42 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x y^{\prime \prime }+\left (a \,x^{n}+b \,x^{m}+c \right ) y^{\prime }+\left (c -1\right ) \left (a \,x^{n -1}+b \,x^{m -1}\right ) y&=0 \end{align*}

Maple
ode:=x*diff(diff(y(x),x),x)+(a*x^n+b*x^m+c)*diff(y(x),x)+(c-1)*(a*x^(n-1)+b*x^(m-1))*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ \text {No solution found} \]
Mathematica
ode=x*D[y[x],{x,2}]+(a*x^n+b*x^m+c)*D[y[x],x]+(c-1)*(a*x^(n-1)+b*x^(m-1))*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 

Not solved

Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
b = symbols("b") 
c = symbols("c") 
m = symbols("m") 
n = symbols("n") 
y = Function("y") 
ode = Eq(x*Derivative(y(x), (x, 2)) + (c - 1)*(a*x**(n - 1) + b*x**(m - 1))*y(x) + (a*x**n + b*x**m + c)*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
ValueError : Expected Expr or iterable but got None