61.28.19 problem 79

Internal problem ID [12500]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 2, Second-Order Differential Equations. section 2.1.2-3
Problem number : 79
Date solved : Monday, March 31, 2025 at 05:36:46 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x y^{\prime \prime }+\left (a b \,x^{2}+b -5\right ) y^{\prime }+2 a^{2} \left (b -2\right ) x^{3} y&=0 \end{align*}

Maple. Time used: 0.125 (sec). Leaf size: 88
ode:=x*diff(diff(y(x),x),x)+(a*b*x^2+b-5)*diff(y(x),x)+2*a^2*(b-2)*x^3*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {{\mathrm e}^{-\frac {a \,x^{2} \left (b -2\right )}{2}} c_2 \left (-3 b \operatorname {KummerU}\left (\frac {b}{2}+1, -2+\frac {b}{2}, \frac {a \left (b -4\right ) x^{2}}{2}\right )+\left (a \left (b -4\right ) x^{2}+b +4\right ) \operatorname {KummerU}\left (\frac {b}{2}, -2+\frac {b}{2}, \frac {a \left (b -4\right ) x^{2}}{2}\right )\right )}{2}+{\mathrm e}^{-a \,x^{2}} c_1 \left (a \,x^{2}+1\right ) \]
Mathematica. Time used: 0.658 (sec). Leaf size: 94
ode=x*D[y[x],{x,2}]+(a*b*x^2+b-5)*D[y[x],x]+2*a^2*(b-2)*x^3*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to e^{-2 a^2 \int \frac {x^3}{a x^2+1} \, dx} \left (c_2 \int _1^x\exp \left (\int _1^{K[2]}\frac {4 a^2 K[1]^4+5 a K[1]^2-b \left (a K[1]^2+1\right )^2+5}{a K[1]^3+K[1]}dK[1]\right )dK[2]+c_1\right ) \]
Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
b = symbols("b") 
y = Function("y") 
ode = Eq(2*a**2*x**3*(b - 2)*y(x) + x*Derivative(y(x), (x, 2)) + (a*b*x**2 + b - 5)*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
ValueError : Expected Expr or iterable but got None