Internal
problem
ID
[12565]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
2,
Second-Order
Differential
Equations.
section
2.1.2-4
Problem
number
:
144
Date
solved
:
Monday, March 31, 2025 at 05:39:20 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=x^2*diff(diff(y(x),x),x)+a*x^n*diff(y(x),x)+(a*b*x^(n+2*m)-b^2*x^(4*m+2)+a*m*x^(n-1)-m^2-m)*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=x^2*D[y[x],{x,2}]+a*x^n*D[y[x],x]+(a*b*x^(n+2*m)-b^2*x^(4*m+2)+a*m*x^(n-1)-m^2-m)*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Not solved
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") m = symbols("m") n = symbols("n") y = Function("y") ode = Eq(a*x**n*Derivative(y(x), x) + x**2*Derivative(y(x), (x, 2)) + (a*b*x**(2*m + n) + a*m*x**(n - 1) - b**2*x**(4*m + 2) - m**2 - m)*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
TypeError : Symbol object cannot be interpreted as an integer