Internal
problem
ID
[12501]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
2,
Second-Order
Differential
Equations.
section
2.1.2-3
Problem
number
:
80
Date
solved
:
Monday, March 31, 2025 at 05:36:50 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=x*diff(diff(y(x),x),x)+(a*x^2+b*x)*diff(y(x),x)-(a*c*x^2+(b*c+c^2+a)*x+b+2*c)*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=x*D[y[x],{x,2}]+(a*x^2+b*x)*D[y[x],x]-(a*c*x^2+(a+b*c+c^2)*x+b+2*c)*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") c = symbols("c") y = Function("y") ode = Eq(x*Derivative(y(x), (x, 2)) + (a*x**2 + b*x)*Derivative(y(x), x) - (a*c*x**2 + b + 2*c + x*(a + b*c + c**2))*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False