61.28.38 problem 98

Internal problem ID [12519]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 2, Second-Order Differential Equations. section 2.1.2-3
Problem number : 98
Date solved : Monday, March 31, 2025 at 05:37:30 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x y^{\prime \prime }+\left (a b \,x^{n}+b -3 n +1\right ) y^{\prime }+a^{2} n \left (b -n \right ) x^{2 n -1} y&=0 \end{align*}

Maple
ode:=x*diff(diff(y(x),x),x)+(a*b*x^n+b-3*n+1)*diff(y(x),x)+a^2*n*(b-n)*x^(2*n-1)*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ \text {No solution found} \]
Mathematica
ode=x*D[y[x],{x,2}]+(a*b*x^n+b-3*n+1)*D[y[x],x]+a^2*n*(b-n)*x^(2*n-1)*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 

Not solved

Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
b = symbols("b") 
n = symbols("n") 
y = Function("y") 
ode = Eq(a**2*n*x**(2*n - 1)*(b - n)*y(x) + x*Derivative(y(x), (x, 2)) + (a*b*x**n + b - 3*n + 1)*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
False