61.30.15 problem 163

Internal problem ID [12584]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 2, Second-Order Differential Equations. section 2.1.2-5
Problem number : 163
Date solved : Monday, March 31, 2025 at 05:43:00 AM
CAS classification : [[_2nd_order, _exact, _linear, _homogeneous]]

\begin{align*} \left (x^{2}+a \right ) y^{\prime \prime }+2 b x y^{\prime }+2 \left (b -1\right ) y&=0 \end{align*}

Maple. Time used: 0.035 (sec). Leaf size: 41
ode:=(x^2+a)*diff(diff(y(x),x),x)+2*b*x*diff(y(x),x)+2*(b-1)*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_1 \left (\frac {x^{2}+a}{a}\right )^{-b +1}+c_2 x \operatorname {hypergeom}\left (\left [1, b -\frac {1}{2}\right ], \left [\frac {3}{2}\right ], -\frac {x^{2}}{a}\right ) \]
Mathematica. Time used: 0.274 (sec). Leaf size: 64
ode=(x^2+a)*D[y[x],{x,2}]+2*b*x*D[y[x],x]+2*(b-1)*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \left (a+x^2\right ) \left (\frac {c_2 x \left (\frac {a+x^2}{a}\right )^{-b} \operatorname {Hypergeometric2F1}\left (\frac {1}{2},2-b,\frac {3}{2},-\frac {x^2}{a}\right )}{a^2}+c_1 \left (a+x^2\right )^{-b}\right ) \]
Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
b = symbols("b") 
y = Function("y") 
ode = Eq(2*b*x*Derivative(y(x), x) + (a + x**2)*Derivative(y(x), (x, 2)) + (2*b - 2)*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
False