61.30.17 problem 165

Internal problem ID [12586]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 2, Second-Order Differential Equations. section 2.1.2-5
Problem number : 165
Date solved : Monday, March 31, 2025 at 05:43:35 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} \left (a^{2}+x^{2}\right ) y^{\prime \prime }+2 b x y^{\prime }+b \left (b -1\right ) y&=0 \end{align*}

Maple. Time used: 0.036 (sec). Leaf size: 31
ode:=(a^2+x^2)*diff(diff(y(x),x),x)+2*b*x*diff(y(x),x)+b*(b-1)*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_1 \left (-i x +a \right )^{-b +1}+c_2 \left (i x +a \right )^{-b +1} \]
Mathematica. Time used: 0.641 (sec). Leaf size: 109
ode=(x^2+a^2)*D[y[x],{x,2}]+2*b*x*D[y[x],x]+b*(b-1)*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \left (a^2+x^2\right )^{-b/2} \exp \left (\int _1^x\frac {i \sqrt {(b-1)^2} a+K[1]}{a^2+K[1]^2}dK[1]\right ) \left (c_2 \int _1^x\exp \left (-2 \int _1^{K[2]}\frac {i \sqrt {(b-1)^2} a+K[1]}{a^2+K[1]^2}dK[1]\right )dK[2]+c_1\right ) \]
Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
b = symbols("b") 
y = Function("y") 
ode = Eq(2*b*x*Derivative(y(x), x) + b*(b - 1)*y(x) + (a**2 + x**2)*Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
False