61.28.12 problem 72

Internal problem ID [12493]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 2, Second-Order Differential Equations. section 2.1.2-3
Problem number : 72
Date solved : Monday, March 31, 2025 at 05:36:30 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x y^{\prime \prime }+\left (2 a x +b \right ) y^{\prime }+a \left (a x +b \right ) y&=0 \end{align*}

Maple. Time used: 0.005 (sec). Leaf size: 21
ode:=x*diff(diff(y(x),x),x)+(2*a*x+b)*diff(y(x),x)+a*(a*x+b)*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = {\mathrm e}^{-a x} \left (c_2 \,x^{-b +1}+c_1 \right ) \]
Mathematica. Time used: 0.145 (sec). Leaf size: 70
ode=x*D[y[x],{x,2}]+(2*a*x+b)*D[y[x],x]+a*(a*x+b)*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {e^{-a x} x^{\frac {1}{2} \left (-b-\sqrt {(b-1)^2}+1\right )} \left (c_2 x^{\sqrt {(b-1)^2}}+\sqrt {(b-1)^2} c_1\right )}{\sqrt {(b-1)^2}} \]
Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
b = symbols("b") 
y = Function("y") 
ode = Eq(a*(a*x + b)*y(x) + x*Derivative(y(x), (x, 2)) + (2*a*x + b)*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
ValueError : Expected Expr or iterable but got None