Internal
problem
ID
[12590]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
2,
Second-Order
Differential
Equations.
section
2.1.2-5
Problem
number
:
169
Date
solved
:
Monday, March 31, 2025 at 05:52:28 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=(a*x^2+b)*diff(diff(y(x),x),x)+(c*x^2+d)*diff(y(x),x)+lambda*((-a*lambda+c)*x^2+d-lambda*b)*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=(a*x^2+b)*D[y[x],{x,2}]+(c*x^2+d)*D[y[x],x]+\[Lambda]*((c-a*\[Lambda])*x^2+d-b*\[Lambda])*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") c = symbols("c") d = symbols("d") lambda_ = symbols("lambda_") y = Function("y") ode = Eq(lambda_*(-b*lambda_ + d + x**2*(-a*lambda_ + c))*y(x) + (a*x**2 + b)*Derivative(y(x), (x, 2)) + (c*x**2 + d)*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False