Internal
problem
ID
[12580]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
2,
Second-Order
Differential
Equations.
section
2.1.2-5
Problem
number
:
159
Date
solved
:
Monday, March 31, 2025 at 05:39:57 AM
CAS
classification
:
[_Gegenbauer]
ode:=(-x^2+1)*diff(diff(y(x),x),x)+(2*a-3)*x*diff(y(x),x)+(n+1)*(n+2*a-1)*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=(1-x^2)*D[y[x],{x,2}]+(2*a-3)*D[y[x],x]+(n+1)*(n+2*a-1)*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") n = symbols("n") y = Function("y") ode = Eq(x*(2*a - 3)*Derivative(y(x), x) + (1 - x**2)*Derivative(y(x), (x, 2)) + (n + 1)*(2*a + n - 1)*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False