Internal
problem
ID
[12581]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
2,
Second-Order
Differential
Equations.
section
2.1.2-5
Problem
number
:
160
Date
solved
:
Monday, March 31, 2025 at 05:40:00 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=(-x^2+1)*diff(diff(y(x),x),x)+(beta-alpha-(alpha+beta+2)*x)*diff(y(x),x)+n*(n+alpha+beta+1)*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=(1-x^2)*D[y[x],{x,2}]+(\[Beta]-\[Alpha]-(\[Alpha]+\[Beta]+2)*x)*D[y[x],x]+n*(n+\[Alpha]+\[Beta]+1)*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") Alpha = symbols("Alpha") BETA = symbols("BETA") n = symbols("n") y = Function("y") ode = Eq(n*(Alpha + BETA + n + 1)*y(x) + (1 - x**2)*Derivative(y(x), (x, 2)) + (-Alpha + BETA - x*(Alpha + BETA + 2))*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False