Internal
problem
ID
[12598]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
2,
Second-Order
Differential
Equations.
section
2.1.2-5
Problem
number
:
177
Date
solved
:
Monday, March 31, 2025 at 05:53:13 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, `_with_symmetry_[0,F(x)]`]]
ode:=(a*x^2+2*b*x+c)*diff(diff(y(x),x),x)+(a*x+b)*diff(y(x),x)+d*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=(a*x^2+2*b*x+c)*D[y[x],{x,2}]+(a*x+b)*D[y[x],x]+d*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") c = symbols("c") d = symbols("d") y = Function("y") ode = Eq(d*y(x) + (a*x + b)*Derivative(y(x), x) + (a*x**2 + 2*b*x + c)*Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False