Internal
problem
ID
[12543]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
2,
Second-Order
Differential
Equations.
section
2.1.2-4
Problem
number
:
122
Date
solved
:
Monday, March 31, 2025 at 05:38:28 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=x^2*diff(diff(y(x),x),x)+(a*x^(2*n)*(b*x^n+c)^m+1/4-1/4*n^2)*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=x^2*D[y[x],{x,2}]+(a*x^(2*n)*(b*x^n+c)^m+1/4-1/4*n^2)*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Not solved
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") c = symbols("c") m = symbols("m") n = symbols("n") y = Function("y") ode = Eq(x**2*Derivative(y(x), (x, 2)) + (a*x**(2*n)*(b*x**n + c)**m - n**2/4 + 1/4)*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : Not sure of sign of -2*n