Internal
problem
ID
[12569]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
2,
Second-Order
Differential
Equations.
section
2.1.2-4
Problem
number
:
148
Date
solved
:
Monday, March 31, 2025 at 05:39:30 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=x^2*diff(diff(y(x),x),x)+(a*x^(n+2)+b*x^2+c)*diff(y(x),x)+(a*n*x^(n+1)+a*c*x^n+b*c)*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=x^2*D[y[x],{x,2}]+(a*x^(n+2)+b*x^2+c)*D[y[x],x]+(a*n*x^(n+1)+a*c*x^n+b*c)*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Not solved
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") c = symbols("c") n = symbols("n") y = Function("y") ode = Eq(x**2*Derivative(y(x), (x, 2)) + (a*x**(n + 2) + b*x**2 + c)*Derivative(y(x), x) + (a*c*x**n + a*n*x**(n + 1) + b*c)*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (-a*c*x**n*y(x) - a*n*x**(n + 1)*y(x) - b*c*y(x) - x**2*Derivative(y(x), (x, 2)))/(a*x**(n + 2) + b*x**2 + c) cannot be solved by the factorable group method