61.29.36 problem 145

Internal problem ID [12566]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 2, Second-Order Differential Equations. section 2.1.2-4
Problem number : 145
Date solved : Monday, March 31, 2025 at 05:39:23 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x^{2} y^{\prime \prime }+x \left (a \,x^{n}+b \right ) y^{\prime }+b \left (a \,x^{n}-1\right ) y&=0 \end{align*}

Maple. Time used: 0.160 (sec). Leaf size: 113
ode:=x^2*diff(diff(y(x),x),x)+x*(a*x^n+b)*diff(y(x),x)+b*(a*x^n-1)*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_1 \,x^{-b}+c_2 \left (n \left (a \,x^{n}+b +n +1\right ) \operatorname {WhittakerM}\left (\frac {b -n +1}{2 n}, \frac {b +2 n +1}{2 n}, \frac {a \,x^{n}}{n}\right )+\operatorname {WhittakerM}\left (\frac {b +n +1}{2 n}, \frac {b +2 n +1}{2 n}, \frac {a \,x^{n}}{n}\right ) \left (b +n +1\right )^{2}\right ) x^{-\frac {3 n}{2}+\frac {1}{2}-\frac {b}{2}} {\mathrm e}^{-\frac {a \,x^{n}}{2 n}} \]
Mathematica. Time used: 0.09 (sec). Leaf size: 76
ode=x^2*D[y[x],{x,2}]+x*(a*x^n+b)*D[y[x],x]+b*(a*x^n-1)*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to (-1)^{-\frac {b}{n}} n^{\frac {b}{n}-1} a^{-\frac {b}{n}} \left (x^n\right )^{-\frac {b}{n}} \left ((b+1) c_1 (-1)^{b/n} \Gamma \left (\frac {b+1}{n},0,\frac {a x^n}{n}\right )+c_2 n\right ) \]
Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
b = symbols("b") 
n = symbols("n") 
y = Function("y") 
ode = Eq(b*(a*x**n - 1)*y(x) + x**2*Derivative(y(x), (x, 2)) + x*(a*x**n + b)*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
ValueError : Expected Expr or iterable but got None