| ID | problem | ODE | Solved? | Maple | Mma | Sympy |
| 1 |
\begin{align*}
y^{\prime }&=\frac {\cos \left (y\right ) \sec \left (x \right )}{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 2 |
\begin{align*}
y^{\prime }&=x \left (\cos \left (y\right )+y\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 3 |
\begin{align*}
y^{\prime }&=\frac {\sec \left (x \right ) \left (\sin \left (y\right )+y\right )}{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 4 |
\begin{align*}
y^{\prime }&=\left (5+\frac {\sec \left (x \right )}{x}\right ) \left (\sin \left (y\right )+y\right ) \\
\end{align*} |
✓ |
✓ |
✗ |
✓ |
|
| 5 |
\begin{align*}
y^{\prime }&=1+y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 6 |
\begin{align*}
y^{\prime }&=1+x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 7 |
\begin{align*}
y^{\prime }&=x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 8 |
\begin{align*}
y^{\prime }&=y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 9 |
\begin{align*}
y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 10 |
\begin{align*}
y^{\prime }&=1+\frac {\sec \left (x \right )}{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 11 |
\begin{align*}
y^{\prime }&=x +\frac {\sec \left (x \right ) y}{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 12 |
\begin{align*}
y^{\prime }&=\frac {2 y}{x} \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
|
| 13 |
\begin{align*}
y^{\prime }&=\frac {2 y}{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 14 |
\begin{align*}
y^{\prime }&=\frac {\ln \left (1+y^{2}\right )}{\ln \left (x^{2}+1\right )} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 15 |
\begin{align*}
y^{\prime }&=\frac {1}{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 16 |
\begin{align*}
y^{\prime }&=\frac {-y x -1}{4 x^{3} y-2 x^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 17 |
\begin{align*}
\frac {{y^{\prime }}^{2}}{4}-y^{\prime } x +y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 18 | \begin{align*}
y^{\prime }&=\sqrt {\frac {1+y}{y^{2}}} \\
y \left (0\right ) &= 1 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ |
|
| 19 |
\begin{align*}
y^{\prime }&=\sqrt {1-x^{2}-y^{2}} \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
|
| 20 |
\begin{align*}
y^{\prime }+\frac {y}{3}&=\frac {\left (1-2 x \right ) y^{4}}{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 21 |
\begin{align*}
y^{\prime }&=\sqrt {y}+x \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
|
| 23 |
\begin{align*}
x^{2} y^{\prime }+y^{2}&=x y y^{\prime } \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 24 |
\begin{align*}
y&=y^{\prime } x +{y^{\prime }}^{2} x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 25 |
\begin{align*}
\left (x +y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 26 |
\begin{align*}
y^{\prime } x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 27 |
\begin{align*}
\frac {y^{\prime }}{x +y}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 28 |
\begin{align*}
\frac {y^{\prime }}{x}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 29 |
\begin{align*}
y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 30 |
\begin{align*}
y&={y^{\prime }}^{2} x +{y^{\prime }}^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 31 |
\begin{align*}
y^{\prime }&=\frac {5 x^{2}-y x +y^{2}}{x^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 32 |
\begin{align*}
2 t +3 x+\left (x+2\right ) x^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 33 |
\begin{align*}
y^{\prime }&=\frac {1}{1-y} \\
y \left (0\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 34 |
\begin{align*}
p^{\prime }&=a p-b p^{2} \\
p \left (\operatorname {t0} \right ) &= \operatorname {p0} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 35 |
\begin{align*}
y^{2}+\frac {2}{x}+2 x y y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 36 |
\begin{align*}
x f^{\prime }-f&=\frac {{f^{\prime }}^{2} \left (1-{f^{\prime }}^{\lambda }\right )^{2}}{\lambda ^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
|
| 37 |
\begin{align*}
y^{\prime } x -2 y+b y^{2}&=c \,x^{4} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
|
| 38 |
\begin{align*}
y^{\prime } x -y+y^{2}&=x^{{2}/{3}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
|
| 39 | \begin{align*}
u^{\prime }+u^{2}&=\frac {1}{x^{{4}/{5}}} \\
\end{align*} | ✓ | ✓ | ✓ | ✗ |
|
| 40 |
\begin{align*}
y^{\prime } y-y&=x \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
|
| 41 |
\begin{align*}
y^{\prime \prime }+2 y^{\prime }+y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 41 |
\begin{align*}
5 y^{\prime \prime }+2 y^{\prime }+4 y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 5 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 42 |
\begin{align*}
y^{\prime \prime }+y^{\prime }+4 y&=1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 43 |
\begin{align*}
y^{\prime \prime }+y^{\prime }+4 y&=\sin \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 44 |
\begin{align*}
y&={y^{\prime }}^{2} x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 45 |
\begin{align*}
y^{\prime } y&=1-x {y^{\prime }}^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
|
| 46 |
\begin{align*}
f^{\prime }&=\frac {1}{f} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 47 |
\begin{align*}
t y^{\prime \prime }+4 y^{\prime }&=t^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 48 |
\begin{align*}
\left (t^{2}+9\right ) y^{\prime \prime }+2 t y^{\prime }&=0 \\
y \left (3\right ) &= 2 \pi \\
y^{\prime }\left (3\right ) &= {\frac {2}{3}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 49 |
\begin{align*}
t^{2} y^{\prime \prime }-3 t y^{\prime }+5 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 50 |
\begin{align*}
t y^{\prime \prime }+y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 51 |
\begin{align*}
t^{2} y^{\prime \prime }-2 y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 52 |
\begin{align*}
y^{\prime \prime }+\frac {\left (t^{2}-1\right ) y^{\prime }}{t}+\frac {t^{2} y}{\left (1+{\mathrm e}^{\frac {t^{2}}{2}}\right )^{2}}&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
|
| 53 |
\begin{align*}
t y^{\prime \prime }-y^{\prime }+4 t^{3} y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 54 |
\begin{align*}
y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 55 |
\begin{align*}
y^{\prime \prime }&=1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 56 |
\begin{align*}
y^{\prime \prime }&=f \left (t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 57 | \begin{align*}
y^{\prime \prime }&=k \\
\end{align*} | ✓ | ✓ | ✓ | ✓ |
|
| 58 |
\begin{align*}
y^{\prime }&=-4 \sin \left (x -y\right )-4 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 59 |
\begin{align*}
y^{\prime }+\sin \left (x -y\right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 60 |
\begin{align*}
y^{\prime \prime }&=4 \sin \left (x \right )-4 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 61 |
\begin{align*}
y y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 62 |
\begin{align*}
y y^{\prime \prime }&=1 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
|
| 63 |
\begin{align*}
y y^{\prime \prime }&=x \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
|
| 64 |
\begin{align*}
y^{2} y^{\prime \prime }&=x \\
\end{align*} |
✗ |
✓ |
✗ |
✗ |
|
| 65 |
\begin{align*}
y^{2} y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 66 |
\begin{align*}
3 y y^{\prime \prime }&=\sin \left (x \right ) \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
|
| 67 |
\begin{align*}
3 y y^{\prime \prime }+y&=5 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 68 |
\begin{align*}
a y y^{\prime \prime }+b y&=c \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
|
| 69 |
\begin{align*}
a y^{2} y^{\prime \prime }+b y^{2}&=c \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 70 |
\begin{align*}
a y y^{\prime \prime }+b y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 71 |
\begin{align*}
x^{\prime }\left (t \right )&=9 x \left (t \right )+4 y \left (t \right ) \\
y^{\prime }\left (t \right )&=-6 x \left (t \right )-y \left (t \right ) \\
z^{\prime }\left (t \right )&=6 x \left (t \right )+4 y \left (t \right )+3 z \left (t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 72 |
\begin{align*}
x^{\prime }\left (t \right )&=x \left (t \right )-3 y \left (t \right ) \\
y^{\prime }\left (t \right )&=3 x \left (t \right )+7 y \left (t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 73 |
\begin{align*}
x^{\prime }\left (t \right )&=x \left (t \right )-2 y \left (t \right ) \\
y^{\prime }\left (t \right )&=2 x \left (t \right )+5 y \left (t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 74 |
\begin{align*}
x^{\prime }\left (t \right )&=7 x \left (t \right )+y \left (t \right ) \\
y^{\prime }\left (t \right )&=-4 x \left (t \right )+3 y \left (t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 75 |
\begin{align*}
x^{\prime }\left (t \right )&=x \left (t \right )+y \left (t \right ) \\
y^{\prime }\left (t \right )&=y \left (t \right ) \\
z^{\prime }\left (t \right )&=z \left (t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 76 |
\begin{align*}
x^{\prime }\left (t \right )&=2 x \left (t \right )+y \left (t \right )-z \left (t \right ) \\
y^{\prime }\left (t \right )&=-x \left (t \right )+2 z \left (t \right ) \\
z^{\prime }\left (t \right )&=-x \left (t \right )-2 y \left (t \right )+4 z \left (t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 77 | \begin{align*}
x^{\prime }&=4 A k \left (\frac {x}{A}\right )^{{3}/{4}}-3 k x \\
\end{align*} | ✓ | ✓ | ✓ | ✗ |
|
| 78 |
\begin{align*}
\frac {y^{\prime } y}{1+\frac {\sqrt {1+{y^{\prime }}^{2}}}{2}}&=-x \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
|
| 78 |
\begin{align*}
\frac {y^{\prime } y}{1+\frac {\sqrt {1+{y^{\prime }}^{2}}}{2}}&=-x \\
y \left (0\right ) &= 3 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
|
| 79 |
\begin{align*}
y^{\prime }&=\frac {y \left (1+\frac {a^{2} x}{\sqrt {a^{2} \left (x^{2}+1\right )}}\right )}{\sqrt {a^{2} \left (x^{2}+1\right )}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 80 |
\begin{align*}
y^{\prime }&=x^{2}+y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
|
| 81 |
\begin{align*}
y^{\prime }&=2 \sqrt {y} \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 82 |
\begin{align*}
z^{\prime \prime }+3 z^{\prime }+2 z&=24 \,{\mathrm e}^{-3 t}-24 \,{\mathrm e}^{-4 t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 83 |
\begin{align*}
y^{\prime }&=\sqrt {1-y^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 84 |
\begin{align*}
y^{\prime }&=x^{2}+y^{2}-1 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
|
| 85 |
\begin{align*}
y^{\prime }&=2 y \left (x \sqrt {y}-1\right ) \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
|
| 86 |
\begin{align*}
y^{\prime \prime }&=\frac {1}{y}-\frac {x y^{\prime }}{y^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
|
| 87 |
\begin{align*}
y^{\prime \prime }+y^{\prime }+y&=0 \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 88 |
\begin{align*}
y^{\prime \prime }+y^{\prime }+y&=0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 88 |
\begin{align*}
y^{\prime \prime }+y^{\prime }+y&=0 \\
y^{\prime }\left (0\right ) &= 0 \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 89 |
\begin{align*}
y^{\prime \prime }-y^{\prime } y&=2 x \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
|
| 90 |
\begin{align*}
y^{\prime }-y^{2}-x -x^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
|
| ID | problem | ODE | Solved? | Maple | Mma | Sympy |
| 1 |
\begin{align*}
y^{\prime \prime }-y^{\prime } x -y x -x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
|
| 2 |
\begin{align*}
y^{\prime \prime }-y^{\prime } x -y x -2 x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
|
| 3 |
\begin{align*}
y^{\prime \prime }-y^{\prime } x -y x -3 x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
|
| 4 |
\begin{align*}
y^{\prime \prime }-y^{\prime } x -y x -x^{2}-x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
|
| 5 |
\begin{align*}
y^{\prime \prime }-y^{\prime } x -y x -x^{3}+2&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
|
| 6 |
\begin{align*}
y^{\prime \prime }-y^{\prime } x -y x -x^{4}-6&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
|
| 7 |
\begin{align*}
y^{\prime \prime }-y^{\prime } x -y x -x^{5}+24&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
|
| 8 |
\begin{align*}
y^{\prime \prime }-y^{\prime } x -y x -x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
|
| 9 |
\begin{align*}
y^{\prime \prime }-y^{\prime } x -y x -x^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
|
| 10 |
\begin{align*}
y^{\prime \prime }-y^{\prime } x -y x -x^{3}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
|
| 11 |
\begin{align*}
y^{\prime \prime }-a x y^{\prime }-b x y-c x&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
|
| 12 |
\begin{align*}
y^{\prime \prime }-a x y^{\prime }-b x y-c \,x^{2}&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
|
| 13 |
\begin{align*}
y^{\prime \prime }-a x y^{\prime }-b x y-x^{3} c&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
|
| 14 |
\begin{align*}
y^{\prime \prime }-y^{\prime }-y x -x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
|
| 15 |
\begin{align*}
y^{\prime \prime }-y^{\prime }-y x -x^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
|
| 16 |
\begin{align*}
y^{\prime \prime }-y^{\prime }-y x -x^{2}-1&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
|
| 16 |
\begin{align*}
y^{\prime \prime }-y^{\prime }-y x -x^{2}-1&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
|
| 17 | \begin{align*}
y^{\prime \prime }-2 y^{\prime }-y x -x^{2}-2&=0 \\
\end{align*} | ✓ | ✓ | ✓ | ✗ |
|
| 18 |
\begin{align*}
y^{\prime \prime }-4 y^{\prime }-y x -x^{2}-4&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
|
| 19 |
\begin{align*}
y^{\prime \prime }-y^{\prime }-y x -x^{3}+1&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
|
| 20 |
\begin{align*}
y^{\prime \prime }-2 y^{\prime }-y x -x^{3}-x^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
|
| 21 |
\begin{align*}
y^{\prime \prime }-y^{\prime }-y x -x^{3}+2&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
|
| 22 |
\begin{align*}
y^{\prime \prime }-2 y^{\prime }-y x -x^{3}+2&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
|
| 23 |
\begin{align*}
y^{\prime \prime }-4 y^{\prime }-y x -x^{3}+2&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
|
| 24 |
\begin{align*}
y^{\prime \prime }-6 y^{\prime }-y x -x^{3}+2&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
|
| 25 |
\begin{align*}
y^{\prime \prime }-8 y^{\prime }-y x -x^{3}+2&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
|
| 26 |
\begin{align*}
y^{\prime \prime }-y^{\prime }-y x -x^{4}+3&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
|
| 27 |
\begin{align*}
y^{\prime \prime }-y^{\prime }-y x -x^{3}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
|
| 28 |
\begin{align*}
y^{\prime \prime }-y x -x^{3}+2&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 29 |
\begin{align*}
y^{\prime \prime }-y x -x^{6}+64&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 30 |
\begin{align*}
y^{\prime \prime }-y x -x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 31 |
\begin{align*}
y^{\prime \prime }-y x -x^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 32 |
\begin{align*}
y^{\prime \prime }-y x -x^{3}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 33 |
\begin{align*}
y^{\prime \prime }-y x -x^{6}-x^{3}+42&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 34 |
\begin{align*}
y^{\prime \prime }-x^{2} y-x^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
|
| 35 |
\begin{align*}
y^{\prime \prime }-x^{2} y-x^{3}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
|
| 36 | \begin{align*}
y^{\prime \prime }-x^{2} y-x^{4}&=0 \\
\end{align*} | ✓ | ✓ | ✓ | ✗ |
|
| 37 |
\begin{align*}
y^{\prime \prime }-x^{2} y-x^{4}+2&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
|
| 38 |
\begin{align*}
y^{\prime \prime }-2 x^{2} y-x^{4}+1&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
|
| 39 |
\begin{align*}
y^{\prime \prime }-x^{3} y-x^{3}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
|
| 40 |
\begin{align*}
y^{\prime \prime }-x^{3} y-x^{4}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
|
| 41 |
\begin{align*}
y^{\prime \prime }-x^{2} y^{\prime }-x^{2} y-x^{2}&=0 \\
\end{align*} |
✗ |
✓ |
✗ |
✗ |
|
| 42 |
\begin{align*}
y^{\prime \prime }-x^{3} y^{\prime }-x^{3} y-x^{3}&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
|
| 43 |
\begin{align*}
y^{\prime \prime }-y^{\prime } x -y x -x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
|
| 44 |
\begin{align*}
y^{\prime \prime }-x^{2} y^{\prime }-y x -x^{2}&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
|
| 45 |
\begin{align*}
y^{\prime \prime }-x^{2} y^{\prime }-x^{2} y-x^{3}-x^{2}&=0 \\
\end{align*} |
✗ |
✓ |
✗ |
✗ |
|
| 46 |
\begin{align*}
y^{\prime \prime }-x^{2} y^{\prime }-x^{3} y-x^{4}-x^{2}&=0 \\
\end{align*} |
✗ |
✓ |
✗ |
✗ |
|
| 47 |
\begin{align*}
y^{\prime \prime }-\frac {y^{\prime }}{x}-y x -x^{2}-\frac {1}{x}&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
|
| 48 |
\begin{align*}
y^{\prime \prime }-\frac {y^{\prime }}{x}-x^{2} y-x^{3}-\frac {1}{x}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
|
| 49 |
\begin{align*}
y^{\prime \prime }-\frac {y^{\prime }}{x}-x^{3} y-x^{4}-\frac {1}{x}&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
|
| 50 |
\begin{align*}
y^{\prime \prime }-x^{3} y^{\prime }-y x -x^{3}-x^{2}&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
|
| 51 |
\begin{align*}
y^{\prime \prime }-x^{3} y^{\prime }-x^{2} y-x^{3}&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
|
| 52 |
\begin{align*}
y^{\prime \prime }-x^{3} y^{\prime }-x^{3} y-x^{4}-x^{3}&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
|
| 50 |
\begin{align*}
y^{\prime \prime \prime }-x^{3} y^{\prime }-x^{2} y-x^{3}&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
|
| ID | problem | ODE | Solved? | Maple | Mma | Sympy |
| 1 |
\begin{align*}
y^{\prime \prime }+c y^{\prime }+k y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 2 |
\begin{align*}
w^{\prime }&=-\frac {1}{2}-\frac {\sqrt {1-12 w}}{2} \\
w \left (1\right ) &= -1 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
|
| 3 |
\begin{align*}
y^{\prime \prime }+y&=\sin \left (x \right ) \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 4 |
\begin{align*}
y^{\prime \prime }+y&=\sin \left (x \right ) \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 5 |
\begin{align*}
y^{\prime \prime }+y&=\sin \left (x \right ) \\
y^{\prime }\left (0\right ) &= 1 \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 6 |
\begin{align*}
y^{\prime \prime }+y&=\sin \left (x \right ) \\
y \left (1\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 7 |
\begin{align*}
y^{\prime \prime }+y&=\sin \left (x \right ) \\
y^{\prime }\left (1\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 8 |
\begin{align*}
y^{\prime \prime }+y&=\sin \left (x \right ) \\
y^{\prime }\left (1\right ) &= 0 \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 9 |
\begin{align*}
y^{\prime \prime }+y&=\sin \left (x \right ) \\
y^{\prime }\left (1\right ) &= 0 \\
y \left (2\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 10 |
\begin{align*}
y^{\prime \prime }+y&=\sin \left (x \right ) \\
y^{\prime }\left (1\right ) &= 0 \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 11 |
\begin{align*}
y^{\prime \prime }+y^{\prime }+y&=\sin \left (x \right ) \\
y^{\prime }\left (1\right ) &= 0 \\
y \left (2\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 12 |
\begin{align*}
y^{\prime \prime }+y^{\prime }+y&=\sin \left (x \right ) \\
y^{\prime }\left (1\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 13 |
\begin{align*}
y^{\prime \prime }+y^{\prime }+y&=\sin \left (x \right ) \\
y^{\prime }\left (1\right ) &= 0 \\
y \left (2\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 14 |
\begin{align*}
y^{\prime \prime \prime }+y^{\prime }+y&=x \\
y^{\prime }\left (0\right ) &= 0 \\
y \left (0\right ) &= 0 \\
y^{\prime \prime }\left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
|
| 15 |
\begin{align*}
x^{4} y^{\prime \prime }+x^{3} y^{\prime }-4 x^{2} y&=1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 16 |
\begin{align*}
x^{4} y^{\prime \prime }+x^{3} y^{\prime }-4 x^{2} y&=x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 17 |
\begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x -4 y&=x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 18 | \begin{align*}
x^{4} y^{\prime \prime \prime }+x^{3} y^{\prime \prime }+x^{2} y^{\prime }+y x&=0 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ |
|
| 19 |
\begin{align*}
x^{4} y^{\prime \prime \prime }+x^{3} y^{\prime \prime }+x^{2} y^{\prime }+y x&=x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 20 |
\begin{align*}
5 x^{5} y^{\prime \prime \prime \prime }+4 x^{4} y^{\prime \prime \prime }+x^{2} y^{\prime }+y x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 21 |
\begin{align*}
\left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 22 |
\begin{align*}
\left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2}&=x \\
\end{align*} |
✗ |
✓ |
✗ |
✗ |
|
| 23 |
\begin{align*}
\left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2} x&=1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 24 |
\begin{align*}
\left (x^{2}+1\right ) y^{\prime \prime }+y {y^{\prime }}^{2}&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
|
| 25 |
\begin{align*}
\left (x^{2}+1\right ) y^{\prime \prime }+{y^{\prime }}^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 26 |
\begin{align*}
y^{\prime \prime }+\sin \left (y\right ) {y^{\prime }}^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
|
| 27 |
\begin{align*}
\left (x^{2}+1\right ) y^{\prime \prime }+{y^{\prime }}^{3}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 28 |
\begin{align*}
y^{\prime }&={\mathrm e}^{-\frac {y}{x}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 29 |
\begin{align*}
y^{\prime }&=2 x^{2} \sin \left (\frac {y}{x}\right )^{2}+\frac {y}{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
|
| 30 |
\begin{align*}
4 x^{2} y^{\prime \prime }+y&=8 \sqrt {x}\, \left (\ln \left (x \right )+1\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 31 |
\begin{align*}
v v^{\prime }&=\frac {2 v^{2}}{r^{3}}+\frac {\lambda r}{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| ID | problem | ODE | Solved? | Maple | Mma | Sympy |
| 1 |
\begin{align*}
2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
|
| 2 |
\begin{align*}
2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y&=1 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✗ |
|
| 3 |
\begin{align*}
2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y&=1+x \\
\end{align*} Series expansion around \(x=0\). |
✗ |
✗ |
✓ |
✗ |
|
| 4 |
\begin{align*}
2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y&=x \\
\end{align*} Series expansion around \(x=0\). |
✗ |
✗ |
✓ |
✗ |
|
| 5 |
\begin{align*}
2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y&=x^{2}+x +1 \\
\end{align*} Series expansion around \(x=0\). |
✗ |
✗ |
✓ |
✗ |
|
| 6 |
\begin{align*}
2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y&=x^{2} \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✗ |
|
| 7 |
\begin{align*}
2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y&=x^{2}+1 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✗ |
|
| 8 |
\begin{align*}
2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y&=x^{4} \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✗ |
|
| 9 |
\begin{align*}
2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y&=\sin \left (x \right ) \\
\end{align*} Series expansion around \(x=0\). |
✗ |
✗ |
✓ |
✗ |
|
| 10 |
\begin{align*}
2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y&=1+\sin \left (x \right ) \\
\end{align*} Series expansion around \(x=0\). |
✗ |
✗ |
✓ |
✗ |
|
| 11 |
\begin{align*}
2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y&=x \sin \left (x \right ) \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✗ |
|
| 12 |
\begin{align*}
2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y&=\cos \left (x \right )+\sin \left (x \right ) \\
\end{align*} Series expansion around \(x=0\). |
✗ |
✗ |
✓ |
✗ |
|
| 13 |
\begin{align*}
x^{2} y^{\prime \prime }+\left (\cos \left (x \right )-1\right ) y^{\prime }+{\mathrm e}^{x} y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✗ |
|
| 14 |
\begin{align*}
\left (x -2\right ) y^{\prime \prime }+\frac {y^{\prime }}{x}+\left (1+x \right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
|
| 15 |
\begin{align*}
\left (x -2\right ) y^{\prime \prime }+\frac {y^{\prime }}{x}+\left (1+x \right ) y&=0 \\
\end{align*} Series expansion around \(x=2\). |
✓ |
✓ |
✓ |
✓ |
|
| 16 |
\begin{align*}
\left (1+x \right ) \left (3 x -1\right ) y^{\prime \prime }+\cos \left (x \right ) y^{\prime }-3 y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
|
| 17 |
\begin{align*}
x y^{\prime \prime }+2 y^{\prime }+y x&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
|
| 18 | \begin{align*}
2 x^{2} y^{\prime \prime }+3 y^{\prime } x -y x&=x^{2}+2 x \\
\end{align*} Series expansion around \(x=0\). | ✓ | ✓ | ✓ | ✗ |
|
| 19 |
\begin{align*}
2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y&=1 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✗ |
|
| 20 |
\begin{align*}
2 x^{2} y^{\prime \prime }+2 y^{\prime } x -y x&=1 \\
\end{align*} Series expansion around \(x=0\). |
✗ |
✗ |
✓ |
✗ |
|
| 21 |
\begin{align*}
y^{\prime \prime }+\left (-6+x \right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
|
| 22 |
\begin{align*}
x^{2} y^{\prime \prime }+\left (3 x^{2}+2 x \right ) y^{\prime }-2 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
|
| 23 |
\begin{align*}
2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y&=x^{2}+\cos \left (x \right ) \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✗ |
|
| 24 |
\begin{align*}
2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y&=\cos \left (x \right ) \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✗ |
|
| 24 |
\begin{align*}
2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y&=x^{3}+\cos \left (x \right ) \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✗ |
|
| 24 |
\begin{align*}
2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y&=x^{3} \cos \left (x \right ) \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✗ |
|
| 24 |
\begin{align*}
2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y&=x^{3} \cos \left (x \right )+\sin \left (x \right )^{2} \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✗ |
|
| 24 |
\begin{align*}
2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y&=\ln \left (x \right ) \\
\end{align*} Series expansion around \(x=1\). |
✓ |
✓ |
✓ |
✗ |
|
| 25 |
\begin{align*}
2 x^{2} \left (x^{2}+x +1\right ) y^{\prime \prime }+x \left (11 x^{2}+11 x +9\right ) y^{\prime }+\left (7 x^{2}+10 x +6\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
|
| 26 |
\begin{align*}
x^{2} \left (x +3\right ) y^{\prime \prime }+5 x \left (1+x \right ) y^{\prime }-\left (1-4 x \right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
|
| 27 |
\begin{align*}
x^{2} \left (-x^{2}+2\right ) y^{\prime \prime }-x \left (4 x^{2}+3\right ) y^{\prime }+\left (-2 x^{2}+2\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
|
| 28 |
\begin{align*}
{y^{\prime }}^{2}+y^{2}&=\sec \left (x \right )^{4} \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
|
| 29 |
\begin{align*}
\left (y-2 y^{\prime } x \right )^{2}&={y^{\prime }}^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
|
| 31 |
\begin{align*}
x^{2} y^{\prime \prime }+y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✗ |
|
| 32 |
\begin{align*}
-y+y^{\prime }+x y^{\prime \prime }&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
|
| 33 |
\begin{align*}
4 x y^{\prime \prime }+2 y^{\prime }+y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
|
| 34 |
\begin{align*}
-y+y^{\prime }+x y^{\prime \prime }&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
|
| 35 | \begin{align*}
x y^{\prime \prime }+\left (1+x \right ) y^{\prime }+2 y&=0 \\
\end{align*} Series expansion around \(x=0\). | ✓ | ✓ | ✓ | ✓ |
|
| 36 |
\begin{align*}
x \left (-1+x \right ) y^{\prime \prime }+3 y^{\prime } x +y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
|
| 37 |
\begin{align*}
x^{2} \left (x^{2}-2 x +1\right ) y^{\prime \prime }-x \left (x +3\right ) y^{\prime }+\left (x +4\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
|
| 38 |
\begin{align*}
2 x^{2} \left (x +2\right ) y^{\prime \prime }+5 x^{2} y^{\prime }+\left (1+x \right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
|
| 39 |
\begin{align*}
2 x^{2} y^{\prime \prime }+y^{\prime } x +\left (x -5\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✗ |
|
| 40 |
\begin{align*}
2 x^{2} y^{\prime \prime }+2 y^{\prime } x -y x&=\sin \left (x \right ) \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✗ |
|
| 41 |
\begin{align*}
2 x^{2} y^{\prime \prime }+2 y^{\prime } x -y x&=x \sin \left (x \right ) \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✗ |
|
| 42 |
\begin{align*}
2 x^{2} y^{\prime \prime }+2 y^{\prime } x -y x&=\cos \left (x \right ) \sin \left (x \right ) \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✗ |
|
| 43 |
\begin{align*}
2 x^{2} y^{\prime \prime }+2 y^{\prime } x -y x&=x^{3}+x \sin \left (x \right ) \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✗ |
|
| 44 |
\begin{align*}
\cos \left (x \right ) y^{\prime \prime }+2 y^{\prime } x -y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
|
| 45 |
\begin{align*}
x^{2} y^{\prime \prime }+4 y^{\prime } x +\left (x^{2}+2\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
|
| 46 |
\begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x -y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
|
| 47 |
\begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
|
| 48 |
\begin{align*}
\left (x^{2}-x \right ) y^{\prime \prime }-y^{\prime } x +y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
|
| 49 |
\begin{align*}
x^{2} y^{\prime \prime }+\left (x^{2}+6 x \right ) y^{\prime }+y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
|
| 50 |
\begin{align*}
x^{2} y^{\prime \prime }-y^{\prime } x +\left (x^{2}-8\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
|
| 51 |
\begin{align*}
x^{2} y^{\prime \prime }-9 y^{\prime } x +25 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
|
| 52 |
\begin{align*}
x^{2} y^{\prime \prime }-y^{\prime } x -\left (x^{2}+\frac {5}{4}\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
|
| 53 |
\begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
|
| 54 | \begin{align*}
x y^{\prime \prime }+\left (-x +2\right ) y^{\prime }-y&=0 \\
\end{align*} Series expansion around \(x=0\). | ✓ | ✓ | ✓ | ✓ |
|
| 55 |
\begin{align*}
2 x^{2} y^{\prime \prime }+3 y^{\prime } x -y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
|
| 56 |
\begin{align*}
2 x^{2} y^{\prime \prime }+5 y^{\prime } x +4 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✗ |
|
| 57 |
\begin{align*}
x^{2} y^{\prime \prime }+3 y^{\prime } x +4 x^{4} y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
|
| 58 |
\begin{align*}
x^{2} y^{\prime \prime }-y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
|
| 59 |
\begin{align*}
\left (-x^{2}+1\right ) y^{\prime \prime }+y^{\prime }+y&=x \,{\mathrm e}^{x} \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✗ |
|
| 60 |
\begin{align*}
y^{\prime }&=y \left (1-y^{2}\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 61 |
\begin{align*}
\frac {x y^{\prime \prime }}{1-x}+y&=\frac {1}{1-x} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
|
| 62 |
\begin{align*}
\frac {x y^{\prime \prime }}{1-x}+y x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 63 |
\begin{align*}
\frac {x y^{\prime \prime }}{1-x}+y&=\cos \left (x \right ) \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
|
| 64 |
\begin{align*}
\frac {x y^{\prime \prime }}{-x^{2}+1}+y&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
|
| 65 |
\begin{align*}
y^{\prime \prime }&=\left (x^{2}+3\right ) y \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
|
| 66 |
\begin{align*}
y^{\prime \prime }+\left (-1+x \right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
|
| 67 |
\begin{align*}
x^{\prime }\left (t \right )&=x \left (t \right )+2 y \left (t \right )+2 t +1 \\
y^{\prime }\left (t \right )&=5 x \left (t \right )+y \left (t \right )+3 t -1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 68 |
\begin{align*}
y^{\prime \prime }+20 y^{\prime }+500 y&=100000 \cos \left (100 x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 69 |
\begin{align*}
y^{\prime \prime } \sin \left (2 x \right )^{2}+y^{\prime } \sin \left (4 x \right )-4 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
|
| ID | problem | ODE | Solved? | Maple | Mma | Sympy |
| 1 |
\begin{align*}
y^{\prime \prime }&=A y^{{2}/{3}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 2 |
\begin{align*}
y^{\prime \prime }+2 y^{\prime } x +\left (x^{2}+1\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
|
| 3 |
\begin{align*}
y^{\prime \prime }+2 \cot \left (x \right ) y^{\prime }-y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
|
| 4 |
\begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 5 |
\begin{align*}
4 x^{2} y^{\prime \prime }+\left (-8 x^{2}+4 x \right ) y^{\prime }+\left (4 x^{2}-4 x -1\right ) y&=4 \sqrt {x}\, {\mathrm e}^{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
|
| 6 |
\begin{align*}
x y^{\prime \prime }-\left (2 x +2\right ) y^{\prime }+\left (x +2\right ) y&=6 \,{\mathrm e}^{x} x^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
|
| 7 |
\begin{align*}
y^{\prime }+y&=\frac {1}{x} \\
\end{align*} Series expansion around \(x=0\). |
✗ |
✗ |
✓ |
✗ |
|
| 8 |
\begin{align*}
y^{\prime }+y&=\frac {1}{x^{2}} \\
\end{align*} Series expansion around \(x=0\). |
✗ |
✗ |
✓ |
✗ |
|
| 9 |
\begin{align*}
y^{\prime } x +y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✗ |
|
| 10 |
\begin{align*}
y^{\prime }&=\frac {1}{x} \\
\end{align*} Series expansion around \(x=0\). |
✗ |
✗ |
✓ |
✗ |
|
| 11 |
\begin{align*}
y^{\prime \prime }&=\frac {1}{x} \\
\end{align*} Series expansion around \(x=0\). |
✗ |
✗ |
✓ |
✗ |
|
| 12 |
\begin{align*}
y^{\prime \prime }+y^{\prime }&=\frac {1}{x} \\
\end{align*} Series expansion around \(x=0\). |
✗ |
✗ |
✓ |
✗ |
|
| 13 |
\begin{align*}
y^{\prime \prime }+y&=\frac {1}{x} \\
\end{align*} Series expansion around \(x=0\). |
✗ |
✗ |
✓ |
✗ |
|
| 14 |
\begin{align*}
y^{\prime \prime }+y^{\prime }+y&=\frac {1}{x} \\
\end{align*} Series expansion around \(x=0\). |
✗ |
✗ |
✓ |
✗ |
|
| 15 |
\begin{align*}
h^{2}+\frac {2 a h}{\sqrt {1+{h^{\prime }}^{2}}}&=b^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
|
| 16 |
\begin{align*}
y^{\prime \prime }+2 y^{\prime }-24 y&=16-\left (x +2\right ) {\mathrm e}^{4 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 17 |
\begin{align*}
y^{\prime \prime }+3 y^{\prime }-4 y&=6 \,{\mathrm e}^{2 t -2} \\
y \left (1\right ) &= 4 \\
y^{\prime }\left (1\right ) &= 5 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
|
| 18 | \begin{align*}
y^{\prime \prime }+y&={\mathrm e}^{a \cos \left (x \right )} \\
\end{align*} Series expansion around \(x=0\). | ✓ | ✓ | ✓ | ✗ |
|
| 19 |
\begin{align*}
y^{\prime }&=\frac {y}{2 \ln \left (y\right ) y+y-x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 20 |
\begin{align*}
x y^{\prime \prime }-\left (2 x +1\right ) y^{\prime }+\left (1+x \right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
|
| 21 |
\begin{align*}
x^{2} y^{\prime }+{\mathrm e}^{-y}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 22 |
\begin{align*}
y^{\prime \prime }+{\mathrm e}^{y}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 23 |
\begin{align*}
y^{\prime }&=\frac {y x +3 x -2 y+6}{y x -3 x -2 y+6} \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
|