2.4.58 Problem 55
Internal
problem
ID
[10221]
Book
:
Own
collection
of
miscellaneous
problems
Section
:
section
4.0
Problem
number
:
55
Date
solved
:
Thursday, November 27, 2025 at 10:26:52 AM
CAS
classification
:
[[_2nd_order, _exact, _linear, _homogeneous]]
\begin{align*}
2 x^{2} y^{\prime \prime }+3 y^{\prime } x -y&=0 \\
\end{align*}
Series expansion around
\(x=0\).
The type of the expansion point is first determined. This is done on the homogeneous part of the
ODE.
\[ 2 x^{2} y^{\prime \prime }+3 y^{\prime } x -y = 0 \]
The following is summary of singularities for the above ode. Writing the ode as
\begin{align*} y^{\prime \prime }+p(x) y^{\prime } + q(x) y &=0 \end{align*}
Where
\begin{align*} p(x) &= \frac {3}{2 x}\\ q(x) &= -\frac {1}{2 x^{2}}\\ \end{align*}
Table 2.110: Table \(p(x),q(x)\) singularites.
| |
| \(p(x)=\frac {3}{2 x}\) |
| |
|
singularity | type |
| |
| \(x = 0\) | \(\text {``regular''}\) |
| |
| |
| \(q(x)=-\frac {1}{2 x^{2}}\) |
| |
|
singularity | type |
| |
| \(x = 0\) | \(\text {``regular''}\) |
| |
Combining everything together gives the following summary of singularities for the ode
as
Regular singular points : \([0, \infty ]\)
Irregular singular points : \([]\)
Since \(x = 0\) is regular singular point, then Frobenius power series is used. The ode is normalized to be
\[ 2 x^{2} y^{\prime \prime }+3 y^{\prime } x -y = 0 \]
Let the solution be represented as Frobenius power series of the form
\[
y = \moverset {\infty }{\munderset {n =0}{\sum }}a_{n} x^{n +r}
\]
Then
\begin{align*}
y^{\prime } &= \moverset {\infty }{\munderset {n =0}{\sum }}\left (n +r \right ) a_{n} x^{n +r -1} \\
y^{\prime \prime } &= \moverset {\infty }{\munderset {n =0}{\sum }}\left (n +r \right ) \left (n +r -1\right ) a_{n} x^{n +r -2} \\
\end{align*}
Substituting the
above back into the ode gives
\begin{equation}
\tag{1} 2 x^{2} \left (\moverset {\infty }{\munderset {n =0}{\sum }}\left (n +r \right ) \left (n +r -1\right ) a_{n} x^{n +r -2}\right )+3 \left (\moverset {\infty }{\munderset {n =0}{\sum }}\left (n +r \right ) a_{n} x^{n +r -1}\right ) x -\left (\moverset {\infty }{\munderset {n =0}{\sum }}a_{n} x^{n +r}\right ) = 0
\end{equation}
Which simplifies to
\begin{equation}
\tag{2A} \left (\moverset {\infty }{\munderset {n =0}{\sum }}2 x^{n +r} a_{n} \left (n +r \right ) \left (n +r -1\right )\right )+\left (\moverset {\infty }{\munderset {n =0}{\sum }}3 x^{n +r} a_{n} \left (n +r \right )\right )+\moverset {\infty }{\munderset {n =0}{\sum }}\left (-a_{n} x^{n +r}\right ) = 0
\end{equation}
The next step is to make all powers of
\(x\) be
\(n +r\) in
each summation term. Going over each summation term above with power of
\(x\) in it which is not
already
\(x^{n +r}\) and adjusting the power and the corresponding index gives Substituting all the above in
Eq (2A) gives the following equation where now all powers of
\(x\) are the same and equal to
\(n +r\).
\begin{equation}
\tag{2B} \left (\moverset {\infty }{\munderset {n =0}{\sum }}2 x^{n +r} a_{n} \left (n +r \right ) \left (n +r -1\right )\right )+\left (\moverset {\infty }{\munderset {n =0}{\sum }}3 x^{n +r} a_{n} \left (n +r \right )\right )+\moverset {\infty }{\munderset {n =0}{\sum }}\left (-a_{n} x^{n +r}\right ) = 0
\end{equation}
The indicial equation is obtained from
\(n = 0\). From Eq (2B) this gives
\[ 2 x^{n +r} a_{n} \left (n +r \right ) \left (n +r -1\right )+3 x^{n +r} a_{n} \left (n +r \right )-a_{n} x^{n +r} = 0 \]
When
\(n = 0\) the above
becomes
\[ 2 x^{r} a_{0} r \left (-1+r \right )+3 x^{r} a_{0} r -a_{0} x^{r} = 0 \]
Or
\[ \left (2 x^{r} r \left (-1+r \right )+3 x^{r} r -x^{r}\right ) a_{0} = 0 \]
Since
\(a_{0}\neq 0\) then the above simplifies to
\[ \left (2 r^{2}+r -1\right ) x^{r} = 0 \]
Since the above is true for all
\(x\) then
the indicial equation becomes
\[ 2 r^{2}+r -1 = 0 \]
Solving for
\(r\) gives the roots of the indicial equation as
\begin{align*} r_1 &= {\frac {1}{2}}\\ r_2 &= -1 \end{align*}
Since \(a_{0}\neq 0\) then the indicial equation becomes
\[ \left (2 r^{2}+r -1\right ) x^{r} = 0 \]
Solving for
\(r\) gives the roots of the indicial equation as
\(\left [{\frac {1}{2}}, -1\right ]\).
Since \(r_1 - r_2 = {\frac {3}{2}}\) is not an integer, then we can construct two linearly independent solutions
\begin{align*} y_{1}\left (x \right ) &= x^{r_{1}} \left (\moverset {\infty }{\munderset {n =0}{\sum }}a_{n} x^{n}\right )\\ y_{2}\left (x \right ) &= x^{r_{2}} \left (\moverset {\infty }{\munderset {n =0}{\sum }}b_{n} x^{n}\right ) \end{align*}
Or
\begin{align*} y_{1}\left (x \right ) &= \moverset {\infty }{\munderset {n =0}{\sum }}a_{n} x^{n +\frac {1}{2}}\\ y_{2}\left (x \right ) &= \moverset {\infty }{\munderset {n =0}{\sum }}b_{n} x^{n -1} \end{align*}
We start by finding \(y_{1}\left (x \right )\). Eq (2B) derived above is now used to find all \(a_{n}\) coefficients. The case \(n = 0\) is
skipped since it was used to find the roots of the indicial equation. \(a_{0}\) is arbitrary and taken as \(a_{0} = 1\). For \(0\le n\)
the recursive equation is
\begin{equation}
\tag{3} 2 a_{n} \left (n +r \right ) \left (n +r -1\right )+3 a_{n} \left (n +r \right )-a_{n} = 0
\end{equation}
Solving for
\(a_{n}\) from recursive equation (4) gives
\[ a_{n} = 0\tag {4} \]
Which for the
root
\(r = {\frac {1}{2}}\) becomes
\[ a_{n} = 0\tag {5} \]
At this point, it is a good idea to keep track of
\(a_{n}\) in a table both before
substituting
\(r = {\frac {1}{2}}\) and after as more terms are found using the above recursive equation.
| | |
| \(n\) | \(a_{n ,r}\) | \(a_{n}\) |
| | |
| \(a_{0}\) | \(1\) | \(1\) |
| | |
For \(n = 1\), using the above recursive equation gives
\[ a_{1}=0 \]
And the table now becomes
| | |
| \(n\) |
\(a_{n ,r}\) |
\(a_{n}\) |
| | |
| \(a_{0}\) |
\(1\) | \(1\) |
| | |
| \(a_{1}\) | \(0\) | \(0\) |
| | |
For \(n = 2\), using the above recursive equation gives
\[ a_{2}=0 \]
And the table now becomes
| | |
| \(n\) |
\(a_{n ,r}\) |
\(a_{n}\) |
| | |
| \(a_{0}\) |
\(1\) | \(1\) |
| | |
| \(a_{1}\) | \(0\) | \(0\) |
| | |
| \(a_{2}\) | \(0\) | \(0\) |
| | |
For \(n = 3\), using the above recursive equation gives
\[ a_{3}=0 \]
And the table now becomes
| | |
| \(n\) |
\(a_{n ,r}\) |
\(a_{n}\) |
| | |
| \(a_{0}\) |
\(1\) |
\(1\) |
| | |
| \(a_{1}\) |
\(0\) | \(0\) |
| | |
| \(a_{2}\) | \(0\) | \(0\) |
| | |
| \(a_{3}\) |
\(0\) |
\(0\) |
| | |
For \(n = 4\), using the above recursive equation gives
\[ a_{4}=0 \]
And the table now becomes
| | |
| \(n\) |
\(a_{n ,r}\) |
\(a_{n}\) |
| | |
| \(a_{0}\) |
\(1\) |
\(1\) |
| | |
| \(a_{1}\) |
\(0\) | \(0\) |
| | |
| \(a_{2}\) | \(0\) | \(0\) |
| | |
| \(a_{3}\) | \(0\) | \(0\) |
| | |
| \(a_{4}\) |
\(0\) |
\(0\) |
| | |
For \(n = 5\), using the above recursive equation gives
\[ a_{5}=0 \]
And the table now becomes
| | |
| \(n\) |
\(a_{n ,r}\) |
\(a_{n}\) |
| | |
| \(a_{0}\) |
\(1\) |
\(1\) |
| | |
| \(a_{1}\) |
\(0\) |
\(0\) |
| | |
| \(a_{2}\) |
\(0\) | \(0\) |
| | |
| \(a_{3}\) | \(0\) | \(0\) |
| | |
| \(a_{4}\) |
\(0\) |
\(0\) |
| | |
| \(a_{5}\) |
\(0\) |
\(0\) |
| | |
Using the above table, then the solution \(y_{1}\left (x \right )\) is
\begin{align*} y_{1}\left (x \right )&= \sqrt {x} \left (a_{0}+a_{1} x +a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6}\dots \right ) \\ &= \sqrt {x}\, \left (1+O\left (x^{6}\right )\right ) \end{align*}
Now the second solution \(y_{2}\left (x \right )\) is found. Eq (2B) derived above is now used to find all \(b_{n}\) coefficients. The
case \(n = 0\) is skipped since it was used to find the roots of the indicial equation. \(b_{0}\) is arbitrary and taken
as \(b_{0} = 1\). For \(0\le n\) the recursive equation is
\begin{equation}
\tag{3} 2 b_{n} \left (n +r \right ) \left (n +r -1\right )+3 b_{n} \left (n +r \right )-b_{n} = 0
\end{equation}
Solving for
\(b_{n}\) from recursive equation (4) gives
\[ b_{n} = 0\tag {4} \]
Which for the
root
\(r = -1\) becomes
\[ b_{n} = 0\tag {5} \]
At this point, it is a good idea to keep track of
\(b_{n}\) in a table both before
substituting
\(r = -1\) and after as more terms are found using the above recursive equation.
| | |
| \(n\) | \(b_{n ,r}\) | \(b_{n}\) |
| | |
| \(b_{0}\) | \(1\) | \(1\) |
| | |
For \(n = 1\), using the above recursive equation gives
\[ b_{1}=0 \]
And the table now becomes
| | |
| \(n\) |
\(b_{n ,r}\) |
\(b_{n}\) |
| | |
| \(b_{0}\) |
\(1\) | \(1\) |
| | |
| \(b_{1}\) | \(0\) | \(0\) |
| | |
For \(n = 2\), using the above recursive equation gives
\[ b_{2}=0 \]
And the table now becomes
| | |
| \(n\) |
\(b_{n ,r}\) |
\(b_{n}\) |
| | |
| \(b_{0}\) |
\(1\) | \(1\) |
| | |
| \(b_{1}\) | \(0\) | \(0\) |
| | |
| \(b_{2}\) | \(0\) | \(0\) |
| | |
For \(n = 3\), using the above recursive equation gives
\[ b_{3}=0 \]
And the table now becomes
| | |
| \(n\) |
\(b_{n ,r}\) |
\(b_{n}\) |
| | |
| \(b_{0}\) |
\(1\) |
\(1\) |
| | |
| \(b_{1}\) |
\(0\) | \(0\) |
| | |
| \(b_{2}\) | \(0\) | \(0\) |
| | |
| \(b_{3}\) |
\(0\) |
\(0\) |
| | |
For \(n = 4\), using the above recursive equation gives
\[ b_{4}=0 \]
And the table now becomes
| | |
| \(n\) |
\(b_{n ,r}\) |
\(b_{n}\) |
| | |
| \(b_{0}\) |
\(1\) |
\(1\) |
| | |
| \(b_{1}\) |
\(0\) | \(0\) |
| | |
| \(b_{2}\) | \(0\) | \(0\) |
| | |
| \(b_{3}\) | \(0\) | \(0\) |
| | |
| \(b_{4}\) |
\(0\) |
\(0\) |
| | |
For \(n = 5\), using the above recursive equation gives
\[ b_{5}=0 \]
And the table now becomes
| | |
| \(n\) |
\(b_{n ,r}\) |
\(b_{n}\) |
| | |
| \(b_{0}\) |
\(1\) |
\(1\) |
| | |
| \(b_{1}\) |
\(0\) |
\(0\) |
| | |
| \(b_{2}\) |
\(0\) | \(0\) |
| | |
| \(b_{3}\) | \(0\) | \(0\) |
| | |
| \(b_{4}\) |
\(0\) |
\(0\) |
| | |
| \(b_{5}\) |
\(0\) |
\(0\) |
| | |
Using the above table, then the solution \(y_{2}\left (x \right )\) is
\begin{align*} y_{2}\left (x \right )&= \sqrt {x} \left (b_{0}+b_{1} x +b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6}\dots \right ) \\ &= \frac {1+O\left (x^{6}\right )}{x} \end{align*}
Therefore the homogeneous solution is
\begin{align*}
y_h(x) &= c_1 y_{1}\left (x \right )+c_2 y_{2}\left (x \right ) \\
&= c_1 \sqrt {x}\, \left (1+O\left (x^{6}\right )\right ) + \frac {c_2 \left (1+O\left (x^{6}\right )\right )}{x} \\
\end{align*}
Hence the final solution is
\begin{align*}
y &= y_h \\
&= c_1 \sqrt {x}\, \left (1+O\left (x^{6}\right )\right )+\frac {c_2 \left (1+O\left (x^{6}\right )\right )}{x} \\
\end{align*}
✓ Maple. Time used: 0.018 (sec). Leaf size: 20
Order:=6;
ode:=2*x^2*diff(diff(y(x),x),x)+3*diff(y(x),x)*x-y(x) = 0;
dsolve(ode,y(x),type='series',x=0);
\[
y = \frac {x^{{3}/{2}} c_2 +c_1}{x}+O\left (x^{6}\right )
\]
Maple trace
Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful
Maple step by step
\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & 2 x^{2} \left (\frac {d^{2}}{d x^{2}}y \left (x \right )\right )+3 x \left (\frac {d}{d x}y \left (x \right )\right )-y \left (x \right )=0 \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 2 \\ {} & {} & \frac {d^{2}}{d x^{2}}y \left (x \right ) \\ \bullet & {} & \textrm {Isolate 2nd derivative}\hspace {3pt} \\ {} & {} & \frac {d^{2}}{d x^{2}}y \left (x \right )=\frac {y \left (x \right )}{2 x^{2}}-\frac {3 \left (\frac {d}{d x}y \left (x \right )\right )}{2 x} \\ \bullet & {} & \textrm {Group terms with}\hspace {3pt} y \left (x \right )\hspace {3pt}\textrm {on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear}\hspace {3pt} \\ {} & {} & \frac {d^{2}}{d x^{2}}y \left (x \right )+\frac {3 \left (\frac {d}{d x}y \left (x \right )\right )}{2 x}-\frac {y \left (x \right )}{2 x^{2}}=0 \\ \bullet & {} & \textrm {Multiply by denominators of the ODE}\hspace {3pt} \\ {} & {} & 2 x^{2} \left (\frac {d^{2}}{d x^{2}}y \left (x \right )\right )+3 x \left (\frac {d}{d x}y \left (x \right )\right )-y \left (x \right )=0 \\ \bullet & {} & \textrm {Make a change of variables}\hspace {3pt} \\ {} & {} & t =\ln \left (x \right ) \\ \square & {} & \textrm {Substitute the change of variables back into the ODE}\hspace {3pt} \\ {} & \circ & \textrm {Calculate the}\hspace {3pt} \hspace {3pt}\textrm {1st}\hspace {3pt} \hspace {3pt}\textrm {derivative of}\hspace {3pt} \hspace {3pt}\textrm {y}\hspace {3pt} \hspace {3pt}\textrm {with respect to}\hspace {3pt} \hspace {3pt}\textrm {x}\hspace {3pt} \hspace {3pt}\textrm {, using the chain rule}\hspace {3pt} \\ {} & {} & \frac {d}{d x}y \left (x \right )=\left (\frac {d}{d t}y \left (t \right )\right ) \left (\frac {d}{d x}t \left (x \right )\right ) \\ {} & \circ & \textrm {Compute derivative}\hspace {3pt} \\ {} & {} & \frac {d}{d x}y \left (x \right )=\frac {\frac {d}{d t}y \left (t \right )}{x} \\ {} & \circ & \textrm {Calculate the}\hspace {3pt} \hspace {3pt}\textrm {2nd}\hspace {3pt} \hspace {3pt}\textrm {derivative of}\hspace {3pt} \hspace {3pt}\textrm {y}\hspace {3pt} \hspace {3pt}\textrm {with respect to}\hspace {3pt} \hspace {3pt}\textrm {x}\hspace {3pt} \hspace {3pt}\textrm {, using the chain rule}\hspace {3pt} \\ {} & {} & \frac {d^{2}}{d x^{2}}y \left (x \right )=\left (\frac {d^{2}}{d t^{2}}y \left (t \right )\right ) \left (\frac {d}{d x}t \left (x \right )\right )^{2}+\left (\frac {d^{2}}{d x^{2}}t \left (x \right )\right ) \left (\frac {d}{d t}y \left (t \right )\right ) \\ {} & \circ & \textrm {Compute derivative}\hspace {3pt} \\ {} & {} & \frac {d^{2}}{d x^{2}}y \left (x \right )=\frac {\frac {d^{2}}{d t^{2}}y \left (t \right )}{x^{2}}-\frac {\frac {d}{d t}y \left (t \right )}{x^{2}} \\ & {} & \textrm {Substitute the change of variables back into the ODE}\hspace {3pt} \\ {} & {} & 2 x^{2} \left (\frac {\frac {d^{2}}{d t^{2}}y \left (t \right )}{x^{2}}-\frac {\frac {d}{d t}y \left (t \right )}{x^{2}}\right )+3 \frac {d}{d t}y \left (t \right )-y \left (t \right )=0 \\ \bullet & {} & \textrm {Simplify}\hspace {3pt} \\ {} & {} & 2 \frac {d^{2}}{d t^{2}}y \left (t \right )+\frac {d}{d t}y \left (t \right )-y \left (t \right )=0 \\ \bullet & {} & \textrm {Isolate 2nd derivative}\hspace {3pt} \\ {} & {} & \frac {d^{2}}{d t^{2}}y \left (t \right )=-\frac {\frac {d}{d t}y \left (t \right )}{2}+\frac {y \left (t \right )}{2} \\ \bullet & {} & \textrm {Group terms with}\hspace {3pt} y \left (t \right )\hspace {3pt}\textrm {on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear}\hspace {3pt} \\ {} & {} & \frac {d^{2}}{d t^{2}}y \left (t \right )+\frac {\frac {d}{d t}y \left (t \right )}{2}-\frac {y \left (t \right )}{2}=0 \\ \bullet & {} & \textrm {Characteristic polynomial of ODE}\hspace {3pt} \\ {} & {} & r^{2}+\frac {1}{2} r -\frac {1}{2}=0 \\ \bullet & {} & \textrm {Factor the characteristic polynomial}\hspace {3pt} \\ {} & {} & \frac {\left (r +1\right ) \left (2 r -1\right )}{2}=0 \\ \bullet & {} & \textrm {Roots of the characteristic polynomial}\hspace {3pt} \\ {} & {} & r =\left (-1, \frac {1}{2}\right ) \\ \bullet & {} & \textrm {1st solution of the ODE}\hspace {3pt} \\ {} & {} & y_{1}\left (t \right )={\mathrm e}^{-t} \\ \bullet & {} & \textrm {2nd solution of the ODE}\hspace {3pt} \\ {} & {} & y_{2}\left (t \right )={\mathrm e}^{\frac {t}{2}} \\ \bullet & {} & \textrm {General solution of the ODE}\hspace {3pt} \\ {} & {} & y \left (t \right )=\mathit {C1} y_{1}\left (t \right )+\mathit {C2} y_{2}\left (t \right ) \\ \bullet & {} & \textrm {Substitute in solutions}\hspace {3pt} \\ {} & {} & y \left (t \right )=\mathit {C1} \,{\mathrm e}^{-t}+\mathit {C2} \,{\mathrm e}^{\frac {t}{2}} \\ \bullet & {} & \textrm {Change variables back using}\hspace {3pt} t =\ln \left (x \right ) \\ {} & {} & y \left (x \right )=\frac {\mathit {C1}}{x}+\mathit {C2} \sqrt {x} \\ \bullet & {} & \textrm {Simplify}\hspace {3pt} \\ {} & {} & y \left (x \right )=\frac {\mathit {C1}}{x}+\mathit {C2} \sqrt {x} \end {array} \]
✓ Mathematica. Time used: 0.003 (sec). Leaf size: 18
ode=2*x^2*D[y[x],{x,2}]+3*x*D[y[x],x]-y[x]==0;
ic={};
AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
\[
y(x)\to c_1 \sqrt {x}+\frac {c_2}{x}
\]
✓ Sympy. Time used: 0.203 (sec). Leaf size: 15
from sympy import *
x = symbols("x")
y = Function("y")
ode = Eq(2*x**2*Derivative(y(x), (x, 2)) + 3*x*Derivative(y(x), x) - y(x),0)
ics = {}
dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=6)
\[
y{\left (x \right )} = C_{2} \sqrt {x} + \frac {C_{1}}{x} + O\left (x^{6}\right )
\]