2.2.13 Problem 13
Internal
problem
ID
[10091]
Book
:
Own
collection
of
miscellaneous
problems
Section
:
section
2.0
Problem
number
:
13
Date
solved
:
Monday, December 01, 2025 at 08:39:04 AM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
\begin{align*}
y^{\prime \prime }-a x y^{\prime }-b x y-c \,x^{3}&=0 \\
\end{align*}
✓ Maple. Time used: 0.007 (sec). Leaf size: 515
ode:=diff(diff(y(x),x),x)-a*x*diff(y(x),x)-b*x*y(x)-x^3*c = 0;
dsolve(ode,y(x), singsol=all);
\begin{align*} \text {Solution too large to show}\end{align*}
Maple trace
Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Kummer
-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric
-> heuristic approach
<- heuristic approach successful
<- hypergeometric successful
<- special function solution successful
<- solving first the homogeneous part of the ODE successful
✓ Mathematica. Time used: 1.711 (sec). Leaf size: 569
ode=D[y[x],{x,2}]-a*x*D[y[x],x]-b*x*y[x]-c*x^3==0;
ic={};
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
\begin{align*} y(x)&\to e^{-\frac {b x}{a}} \left (\operatorname {HermiteH}\left (\frac {b^2}{a^3},\frac {x a^2+2 b}{\sqrt {2} a^{3/2}}\right ) \int _1^x\frac {a^4 c e^{\frac {b K[1]}{a}} \operatorname {Hypergeometric1F1}\left (-\frac {b^2}{2 a^3},\frac {1}{2},\frac {\left (K[1] a^2+2 b\right )^2}{2 a^3}\right ) K[1]^3}{b^2 \left (\sqrt {2} \operatorname {HermiteH}\left (\frac {b^2}{a^3}-1,\frac {K[1] a^2+2 b}{\sqrt {2} a^{3/2}}\right ) \operatorname {Hypergeometric1F1}\left (-\frac {b^2}{2 a^3},\frac {1}{2},\frac {\left (K[1] a^2+2 b\right )^2}{2 a^3}\right ) a^{3/2}+\operatorname {HermiteH}\left (\frac {b^2}{a^3},\frac {K[1] a^2+2 b}{\sqrt {2} a^{3/2}}\right ) \operatorname {Hypergeometric1F1}\left (1-\frac {b^2}{2 a^3},\frac {3}{2},\frac {\left (K[1] a^2+2 b\right )^2}{2 a^3}\right ) \left (K[1] a^2+2 b\right )\right )}dK[1]+\operatorname {Hypergeometric1F1}\left (-\frac {b^2}{2 a^3},\frac {1}{2},\frac {\left (x a^2+2 b\right )^2}{2 a^3}\right ) \int _1^x-\frac {a^4 c e^{\frac {b K[2]}{a}} \operatorname {HermiteH}\left (\frac {b^2}{a^3},\frac {K[2] a^2+2 b}{\sqrt {2} a^{3/2}}\right ) K[2]^3}{b^2 \left (\sqrt {2} \operatorname {HermiteH}\left (\frac {b^2}{a^3}-1,\frac {K[2] a^2+2 b}{\sqrt {2} a^{3/2}}\right ) \operatorname {Hypergeometric1F1}\left (-\frac {b^2}{2 a^3},\frac {1}{2},\frac {\left (K[2] a^2+2 b\right )^2}{2 a^3}\right ) a^{3/2}+\operatorname {HermiteH}\left (\frac {b^2}{a^3},\frac {K[2] a^2+2 b}{\sqrt {2} a^{3/2}}\right ) \operatorname {Hypergeometric1F1}\left (1-\frac {b^2}{2 a^3},\frac {3}{2},\frac {\left (K[2] a^2+2 b\right )^2}{2 a^3}\right ) \left (K[2] a^2+2 b\right )\right )}dK[2]+c_2 \operatorname {Hypergeometric1F1}\left (-\frac {b^2}{2 a^3},\frac {1}{2},\frac {\left (x a^2+2 b\right )^2}{2 a^3}\right )+c_1 \operatorname {HermiteH}\left (\frac {b^2}{a^3},\frac {x a^2+2 b}{\sqrt {2} a^{3/2}}\right )\right ) \end{align*}
✗ Sympy
from sympy import *
x = symbols("x")
a = symbols("a")
b = symbols("b")
c = symbols("c")
y = Function("y")
ode = Eq(-a*x*Derivative(y(x), x) - b*x*y(x) - c*x**3 + Derivative(y(x), (x, 2)),0)
ics = {}
dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (-b*x*y(x) - c*x**3 + Derivative(y(x), (x, 2)))/(a*x) cannot be solved by the factorable group method