2.5.9 Problem 9
Internal
problem
ID
[10244]
Book
:
Own
collection
of
miscellaneous
problems
Section
:
section
5.0
Problem
number
:
9
Date
solved
:
Monday, January 26, 2026 at 09:26:30 PM
CAS
classification
:
[_separable]
\begin{align*}
y^{\prime } x +y&=0 \\
\end{align*}
Series expansion around \(x=0\).
Entering first order ode series solverEntering first order ode series solver frobenius solverLet the
homogeneous solution be represented as Frobenius power series of the form
\[
y = \moverset {\infty }{\munderset {n =0}{\sum }}a_{n} x^{n +r}
\]
Then \[
y^{\prime } = \moverset {\infty }{\munderset {n =0}{\sum }}\left (n +r \right ) a_{n} x^{n +r -1}
\]
Substituting
the above back into the ode gives \begin{equation}
\tag{1} \left (\moverset {\infty }{\munderset {n =0}{\sum }}\left (n +r \right ) a_{n} x^{n +r -1}\right ) x +\left (\moverset {\infty }{\munderset {n =0}{\sum }}a_{n} x^{n +r}\right ) = 0
\end{equation}
Which simplifies to \begin{equation}
\tag{2A} \left (\moverset {\infty }{\munderset {n =0}{\sum }}\left (n +r \right ) a_{n} x^{n +r}\right )+\left (\moverset {\infty }{\munderset {n =0}{\sum }}a_{n} x^{n +r}\right ) = 0
\end{equation}
The next step is to make all powers of \(x\) be \(n +r\)
in each summation term. Going over each summation term above with power of \(x\) in it which is not
already \(x^{n +r}\) and adjusting the power and the corresponding index gives Substituting all the above in
Eq (2A) gives the following equation where now all powers of \(x\) are the same and equal to \(n +r\). \begin{equation}
\tag{2B} \left (\moverset {\infty }{\munderset {n =0}{\sum }}\left (n +r \right ) a_{n} x^{n +r}\right )+\left (\moverset {\infty }{\munderset {n =0}{\sum }}a_{n} x^{n +r}\right ) = 0
\end{equation}
The
indicial equation is obtained from \(n=0\). From Eq (2) this gives \[
\left (n +r \right ) a_{n} x^{n +r}+a_{n} x^{n +r} = 0
\]
When \(n=0\) the above becomes \[
r a_{0} x^{r}+a_{0} x^{r} = 0
\]
Since \(a_{0}\neq 0\) then the indicial equation becomes \[
\left (r +1\right ) x^{r} = 0
\]
Since the above is true for all \(x\) then the
indicial equation simplifies to \[
r +1 = 0
\]
Solving for \(r\) gives the root of the indicial equation as
\[ r=-1 \]
Replacing \(r=-1\) found above results in
\[
\left (\moverset {\infty }{\munderset {n =0}{\sum }}\left (n -1\right ) a_{n} x^{n -1}\right )+\left (\moverset {\infty }{\munderset {n =0}{\sum }}a_{n} x^{n -1}\right ) = 0
\]
From the above we see that there is no recurrence relation since
there is only one summation term. Therefore all \(a_{n}\) terms are zero except for \(a_{0}\). Hence
\begin{align*} y_h &= a_{0} \left (\frac {1}{x}+O\left (x^{6}\right )\right ) \end{align*}
The solution is
\[
y = c_1 \left (\frac {1}{x}+O\left (x^{6}\right )\right )
\]
|
|
|
| Direction field \(y^{\prime } x +y = 0\) | Isoclines for \(y^{\prime } x +y = 0\) |
2.5.9.1 ✓ Maple. Time used: 0.013 (sec). Leaf size: 14
Order:=6;
ode:=diff(y(x),x)*x+y(x) = 0;
dsolve(ode,y(x),type='series',x=0);
\[
y = \frac {c_1}{x}+O\left (x^{6}\right )
\]
Maple trace
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
Maple step by step
\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & x \left (\frac {d}{d x}y \left (x \right )\right )+y \left (x \right )=0 \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 1 \\ {} & {} & \frac {d}{d x}y \left (x \right ) \\ \bullet & {} & \textrm {Separate variables}\hspace {3pt} \\ {} & {} & \frac {\frac {d}{d x}y \left (x \right )}{y \left (x \right )}=-\frac {1}{x} \\ \bullet & {} & \textrm {Integrate both sides with respect to}\hspace {3pt} x \\ {} & {} & \int \frac {\frac {d}{d x}y \left (x \right )}{y \left (x \right )}d x =\int -\frac {1}{x}d x +\mathit {C1} \\ \bullet & {} & \textrm {Evaluate integral}\hspace {3pt} \\ {} & {} & \ln \left (y \left (x \right )\right )=-\ln \left (x \right )+\mathit {C1} \\ \bullet & {} & \textrm {Solve for}\hspace {3pt} y \left (x \right ) \\ {} & {} & y \left (x \right )=\frac {{\mathrm e}^{\mathit {C1}}}{x} \\ \bullet & {} & \textrm {Redefine the integration constant(s)}\hspace {3pt} \\ {} & {} & y \left (x \right )=\frac {\mathit {C1}}{x} \end {array} \]
2.5.9.2 ✓ Mathematica. Time used: 0.001 (sec). Leaf size: 9
ode=x*D[y[x],x]+y[x]==0;
ic={};
AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
\[
y(x)\to \frac {c_1}{x}
\]
2.5.9.3 ✗ Sympy
from sympy import *
x = symbols("x")
y = Function("y")
ode = Eq(x*Derivative(y(x), x) + y(x),0)
ics = {}
dsolve(ode,func=y(x),ics=ics,hint="1st_power_series",x0=0,n=6)
ValueError : ODE x*Derivative(y(x), x) + y(x) does not match hint 1st_power_series
Python version: 3.12.3 (main, Aug 14 2025, 17:47:21) [GCC 13.3.0]
Sympy version 1.14.0
classify_ode(ode,func=y(x))
('factorable', 'separable', '1st_exact', '1st_linear', 'Bernoulli', '1st_homogeneous_coeff_best', '1st_homogeneous_coeff_subs_indep_div_dep', '1st_homogeneous_coeff_subs_dep_div_indep', 'almost_linear', 'lie_group', 'nth_linear_euler_eq_homogeneous', 'separable_Integral', '1st_exact_Integral', '1st_linear_Integral', 'Bernoulli_Integral', '1st_homogeneous_coeff_subs_indep_div_dep_Integral', '1st_homogeneous_coeff_subs_dep_div_indep_Integral', 'almost_linear_Integral')